Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(math/poly/fft.md): typo #3111

Merged
merged 1 commit into from
Apr 14, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/math/poly/fft.md
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ $$
\frac{1}{\omega_k}=\omega_k^{-1}=e^{-\frac{2\pi i}{k}}=\cos\left(\frac{2\pi}{k}\right)+i\cdot \sin\left(-\frac{2\pi}{k}\right)
$$

因此我们可以尝试着把单位根 $\omega_k$ 取成 $e^{-\frac{2\pi i}{k}}$,这样我们的计算结果就会变成原来的倒数,而其它的操作过程与 DFT 是完全相同的。我们可以定义一个函数,在里面加一个参数 $1$ 或者是 $-1$,然后把它乘到 $\pi$ $的身上。传入$ 1 $就是 DFT,传入$-1$ 就是 IDFT。
因此我们可以尝试着把单位根 $\omega_k$ 取成 $e^{-\frac{2\pi i}{k}}$,这样我们的计算结果就会变成原来的倒数,而其它的操作过程与 DFT 是完全相同的。我们可以定义一个函数,在里面加一个参数 $1$ 或者是 $-1$,然后把它乘到 $\pi$ 。传入 $1$ 就是 DFT,传入 $-1$ 就是 IDFT。

### 单位复根周期性

Expand Down