forked from vgdh/seam-slope-postprocessor
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpostprocessor_seam_slope.py
778 lines (645 loc) · 28.4 KB
/
postprocessor_seam_slope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
#!/usr/bin/python
import argparse
import math
from enum import Enum
import re
import os
from typing import List
class Line:
def __init__(self, xy1: tuple, xy2: tuple):
self.x1 = xy1[0]
self.y1 = xy1[1]
self.x2 = xy2[0]
self.y2 = xy2[1]
self._length = None
def length(self):
if self._length is None:
self._length = math.hypot(self.x2 - self.x1, self.y2 - self.y1)
return self._length
def __str__(self):
return f'X1:{self.x1} Y1:{self.y1} X2:{self.x2} Y2:{self.y2}'
class Parameter:
def __init__(self, name, value):
self.name = name
self.value = value
def __str__(self):
return f"{self.name}{self.value}"
def clone(self):
return Parameter(self.name, self.value)
class State:
def __init__(self, x=None, y=None, z=None, e=None, f=None,
extr_temp=None, bed_temp=None, fan=None, move_absolute=True,
extrude_absolute=True, is_outer_perimeter=False):
self.X = x
self.Y = y
self.Z = z
self.E = e
self.F = f
self.ExtruderTemperature = extr_temp
self.BedTemperature = bed_temp
self.Fan = fan
self.move_is_absolute = move_absolute
self.extrude_is_absolute = extrude_absolute
self.is_outer_perimeter = is_outer_perimeter
def clone(self):
return State(self.X, self.Y, self.Z, self.E, self.F,
self.ExtruderTemperature, self.BedTemperature, self.Fan,
self.move_is_absolute, self.extrude_is_absolute, self.is_outer_perimeter)
class Gcode:
def __init__(self, command: str = None, parameters: List[Parameter] = None,
move_is_absolute: bool = True, extrude_is_absolute: bool = True,
comment: str = None, previous_state: State = None):
self.command = command
if parameters is None:
self.parameters = []
else:
self.parameters = parameters
self.move_is_absolute = move_is_absolute
self.extrude_is_absolute = extrude_is_absolute
self.comment = comment
self.previous_state = previous_state
self.num_line = None
@staticmethod
def _format_number(number: int, precision: int) -> str:
value = round(number, precision)
value = format(value, '.' + str(precision) + 'f')
value = value.rstrip('0').rstrip('.')
if value.startswith('0.'):
value = value[1:]
elif value.startswith('-0.'):
value = '-' + value[2:]
return value
def __str__(self):
string = ""
if self.command is not None:
string += self.command
for st in self.parameters:
if st.value is None:
string += f' {st.name}'
else:
if st.name == "X" or st.name == "Y" or st.name == "Z":
string += f' {st.name}{Gcode._format_number(st.value, 3)}'
elif st.name == "E":
string += f' {st.name}{Gcode._format_number(st.value, 3)}' # 1 micron is for sure enough accuracy for extrude move
if self.is_xy_movement() is False:
comment = None
if st.value < 0:
comment = "retract"
elif st.value > 0:
comment = "un_retract"
if self.comment is None:
self.comment = comment
else:
self.comment += f" {comment}"
else:
string += f' {st.name}{st.value}'
if self.comment is not None and len(self.comment) > 1:
if string == "":
string += f"; {self.comment}"
else:
string += f" ; {self.comment}"
return string
def clone(self):
if self.previous_state is None:
prev_state = State()
else:
prev_state = self.previous_state.clone()
gcode = Gcode(self.command,
move_is_absolute=self.move_is_absolute, extrude_is_absolute=self.extrude_is_absolute,
comment=self.comment, previous_state=prev_state)
for param in self.parameters:
gcode.parameters.append(param.clone())
if self.num_line is not None:
gcode.num_line = self.num_line
return gcode
def state(self) -> State:
if self.previous_state is None:
_state = State()
_state.X = 0
_state.Y = 0
_state.Z = 0
_state.E = 0
else:
_state = self.previous_state.clone()
_state.is_outer_perimeter = self.is_outer_perimeter()
if self.command == "G1":
for parameter in self.parameters:
if parameter.name == "X":
if _state.move_is_absolute:
_state.X = parameter.value
else:
_state.X += parameter.value
elif parameter.name == "Y":
if _state.move_is_absolute:
_state.Y = parameter.value
else:
_state.Y += parameter.value
elif parameter.name == "Z":
if _state.move_is_absolute:
_state.Z = parameter.value
else:
_state.Z += parameter.value
elif parameter.name == "E":
if _state.extrude_is_absolute:
_state.E = parameter.value
else:
_state.E += parameter.value
elif parameter.name == "F":
_state.F = parameter.value
elif self.command == "G28":
restore_all = True
for parameter in self.parameters:
if parameter.name == "X":
_state.X = 0
restore_all = False
elif parameter.name == "Y":
_state.Y = 0
restore_all = False
elif parameter.name == "Z":
_state.Z = 0
restore_all = False
if restore_all:
_state.X = 0
_state.Y = 0
_state.Z = 0
_state.E = 0
_state.F = None
elif self.command == "M104" or self.command == "M109":
for parameter in self.parameters:
if parameter.name == "S":
_state.ExtruderTemperature = parameter.value
elif self.command == "M140" or self.command == "M190":
for parameter in self.parameters:
if parameter.name == "S":
_state.BedTemperature = parameter.value
elif self.command == "M106":
for parameter in self.parameters:
if parameter.name == "S":
_state.Fan = parameter.value
elif self.command == "G92": # Set current position
for parameter in self.parameters:
if parameter.name == "X":
_state.X = parameter.value
elif parameter.name == "Y":
_state.Y = parameter.value
elif parameter.name == "Z":
_state.Z = parameter.value
elif parameter.name == "E":
_state.E = parameter.value
_state.move_is_absolute = self.move_is_absolute
_state.extrude_is_absolute = self.extrude_is_absolute
return _state
def is_xy_movement(self):
if self.command != "G1":
return False
found_x = next((gc for gc in self.parameters if gc.name == "X" and gc.value is not None), None)
found_y = next((gc for gc in self.parameters if gc.name == "Y" and gc.value is not None), None)
if found_x is not None or found_y is not None:
return True
return False
def is_z_movement(self):
if self.command != "G1":
return False
found_z = next((gc for gc in self.parameters if gc.name == "Z" and gc.value is not None), None)
if found_z is not None:
return True
return False
def is_any_movement(self):
if self.is_xy_movement() or self.is_z_movement():
return True
return False
def is_extruder_move(self):
found_e = next((gc for gc in self.parameters if gc.name == "E" and gc.value is not None), None)
if found_e is not None and self.command != "G92":
return True
return False
def is_outer_perimeter(self):
if self.command is not None:
outer_wall_types = [";TYPE:Outer wall", ";TYPE:WALL-OUTER", ";TYPE:External perimeter"]
if self.command in outer_wall_types:
return True
elif self.command.startswith(";TYPE:"):
return False
if self.previous_state is None:
return False
return self.previous_state.is_outer_perimeter
def move_length(self) -> float:
state = self.state()
x1 = self.previous_state.X
y1 = self.previous_state.Y
x2 = state.X
y2 = state.Y
if x1 is not None and x2 is not None and y1 is not None and y2 is not None:
return distance_between_points(x1, y1, x2, y2)
return None
def set_param(self, name, value):
found = next((gc for gc in self.parameters if gc.name == name), None)
if found is not None:
found.value = value
else:
self.parameters.append(Parameter(name, value))
def get_param(self, name):
found = next((gc for gc in self.parameters if gc.name == name), None)
if found is not None:
return found.value
def validate_gcode_command_string(string):
# The pattern matches a letter followed by a positive number or zero
pattern = re.compile("^[A-Za-z][0-9]+$")
# The match method returns None if the string does not match the pattern
return pattern.match(string) is not None
def parse_gcode_line(gcode_line: str, prev_state: State) -> Gcode:
gcode = Gcode()
if prev_state is not None:
gcode.previous_state = prev_state.clone()
gcode.extrude_is_absolute = gcode.previous_state.extrude_is_absolute
gcode.move_is_absolute = gcode.previous_state.move_is_absolute
gcode_line = gcode_line.strip()
if not gcode_line:
return gcode
if gcode_line.startswith(";") or gcode_line.startswith("\n"): # If contain only comment
# gcode.comment = gcode_line.replace("\n", "").replace(';', "").strip()
if gcode_line.endswith("\n"):
gcode_line = gcode_line[:len(gcode_line) - 1]
gcode.command = gcode_line.replace("\n", "", )
return gcode
parts = gcode_line.split(';', 1)
if len(parts) > 1:
gcode.comment = parts[1].replace("\n", "").replace(';', "").strip()
gcode_parts = parts[0].strip().split() # Split the line at semicolon to remove comments
if validate_gcode_command_string(gcode_parts[0]) is False: # validate command is one letter and one positive number
gcode.command = parts[0]
return gcode
gcode.command = gcode_parts[0]
for part in gcode_parts[1:]: # Iterate through the remaining parts and extract key-value pairs
name = part[0]
value = part[1:]
try:
value = int(value)
except ValueError:
try:
value = float(value)
except ValueError as e:
# Just keep everything in name
name = part
value = None
parameter = Parameter(name, value)
gcode.parameters.append(parameter)
return gcode
class Mode(Enum):
REGULAR = 0
PERIMETER = 1
EXT_PERIMETER = 2
OVERHANG_PERIMETER = 3
BR_INFILL = 4
SOLID_INFILL = 5
TOP_SOLID_INFILL = 6
def distance_between_points(x1, y1, x2, y2):
if x2 is None:
x2 = x1
if y2 is None:
y2 = y1
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
def delete_file_if_exists(file_path):
if os.path.exists(file_path):
os.remove(file_path)
print(f"The file {file_path} has been deleted.")
else:
print(f"The file {file_path} does not exist.")
def read_gcode_file(path: str) -> List[Gcode]:
gcodes = []
print("Read gcode file to memory")
with open(path, "r", encoding='utf8') as readfile:
lines = readfile.readlines()
last_state = None
num_line = 1
for line in lines:
gcode = parse_gcode_line(line, last_state)
if gcode.command == "G90": # enable absolute coordinates
gcode.move_is_absolute = True
elif gcode.command == "G91": # enable relative coordinates
gcode.move_is_absolute = False
elif gcode.command == "M82": # enable absolute distances for extrusion
gcode.extrude_is_absolute = True
elif gcode.command == "M83": # enable relative distances for extrusion
gcode.extrude_is_absolute = False
last_state = gcode.state()
gcode.num_line = num_line
num_line += 1
z_value = gcode.get_param("Z")
if z_value is not None and z_value > gcode.previous_state.Z:
gcode.comment = "Z lift"
gcodes.append(gcode)
readfile.close()
return gcodes
def calculate_length_of_lines(sliced: List[Gcode]) -> float:
length = 0
for gcode in sliced:
if gcode.is_xy_movement() is False:
continue
length_of_move = gcode.move_length()
if length_of_move is not None:
length += length_of_move
return length
def find_closed_loops(gcodes: List[Gcode],
max_distance_start_end: float,
min_loop_length: float,
first_layer_height: float):
loops = []
start = None
end = None
for gcode_id in range(len(gcodes)):
gcode = gcodes[gcode_id]
if gcode.is_xy_movement() is False:
continue
if gcode.is_extruder_move():
if start is None and gcode.state().Z > first_layer_height and gcode.is_outer_perimeter():
start = gcode
end = gcode
else:
end = gcode
if start is not None and gcode.is_extruder_move() is False:
start_state = start.previous_state
end_state = end.state()
distance = distance_between_points(start_state.X, start_state.Y, end_state.X, end_state.Y)
if distance < max_distance_start_end:
start_index = gcodes.index(start)
end_index = gcodes.index(end)
sliced = gcodes[start_index:end_index + 1]
loop_length = calculate_length_of_lines(sliced)
if loop_length > min_loop_length:
loops.append((start_index, end_index))
print(f"Found a loop number {len(loops)}")
start = None
end = None
return loops
def vector_from_points(p1, p2):
return [p2[0] - p1[0], p2[1] - p1[1]]
def vector_add(v1, v2):
return [v1[0] + v2[0], v1[1] + v2[1]]
def vector_mul(v, s):
return [v[0] * s, v[1] * s]
def vector_mag(v):
return (v[0] ** 2 + v[1] ** 2) ** 0.5
def vector_norm(v):
m = vector_mag(v)
return [v[0] / m, v[1] / m]
def cut_gcode(gcode: Gcode, distance: float):
start = [gcode.previous_state.X, gcode.previous_state.Y] # Define the start and end points as lists
end = [gcode.state().X, gcode.state().Y]
direction = vector_from_points(start, end) # Calculate the direction vector of the line
direction = vector_norm(direction) # Normalize the direction vector to unit length
point = vector_add(start, vector_mul(direction,
distance)) # Calculate the point on the line at the given distance from the start
if gcode.extrude_is_absolute:
raise Exception("extrude mast to be relative")
length = gcode.move_length()
ratio = distance / length
extruded_length = gcode.get_param("E")
extruded_position_1 = extruded_length * ratio
extruded_position_2 = extruded_length - extruded_position_1
gcode1 = gcode.clone()
gcode1.set_param(name="X", value=point[0])
gcode1.set_param(name="Y", value=point[1])
gcode1.set_param(name="E", value=extruded_position_1)
gcode2 = gcode.clone()
gcode2.set_param(name="E", value=extruded_position_2)
gcode2.previous_state = gcode1.state()
return gcode1, gcode2
def make_slope_step_brothers_gcodes(slope_step_gcodes: List[Gcode],
layer_height,
current_layer_level,
slope_height):
start = []
finish = []
finish_nozzle_height = current_layer_level + layer_height
slope_nozzle_height = current_layer_level + slope_height
layer_ratio = slope_height / layer_height
for gcode in slope_step_gcodes:
if gcode.is_xy_movement() is False:
start.append(gcode)
continue
filament_length_original = gcode.get_param("E")
gcode_start = gcode.clone()
gcode_start.set_param("Z", slope_nozzle_height)
filament_start_length = filament_length_original * layer_ratio
gcode_start.set_param("E", filament_start_length)
line_lenght1 = gcode_start.move_length()
extrude_rate1 = 0 if line_lenght1 == 0 else filament_start_length / line_lenght1
gcode_start.comment = f"Slope increase. Length={round(line_lenght1, 3)} R={round(extrude_rate1, 3)}"
start.append(gcode_start)
gcode_finish = gcode.clone()
gcode_finish.set_param("Z", finish_nozzle_height)
filament_finish_length = filament_length_original - filament_start_length
gcode_finish.set_param("E", filament_finish_length)
line_lenght2 = gcode_finish.move_length()
extrude_rate2 = 0 if line_lenght2 == 0 else filament_finish_length / line_lenght2
gcode_finish.comment = f"Slope decrease. Length={round(line_lenght2, 3)} R={round(extrude_rate2, 3)}"
finish.append(gcode_finish)
return start, finish
def reverse_movement_sequence(gcodes: List[Gcode]):
new_gcode_list = []
for gcode in reversed(gcodes):
gc = gcode.clone()
gc.comment = "Return to the original point for the next move"
speed = next((par for par in gc.parameters if par.name == "F"), None)
if speed is not None:
gc.parameters.remove(speed)
extrude = next((par for par in gc.parameters if par.name == "E"), None)
if extrude is not None:
gc.parameters.remove(extrude)
new_gcode_list.append(gc)
new_gcode_list.remove(new_gcode_list[0]) # because we are already here
return new_gcode_list
def remove_very_little_moves(for_return, tolerance: float = 0.01):
without_short_movements = [for_return[0]]
for gid in range(1, len(for_return)):
current_gcode = for_return[gid]
if current_gcode.is_xy_movement() and current_gcode.move_length() < tolerance:
x = current_gcode.get_param("X")
if x is not None:
without_short_movements[-1].set_param("X", x)
y = current_gcode.get_param("Y")
if y is not None:
without_short_movements[-1].set_param("Y", y)
z = current_gcode.get_param("Z")
if z is not None:
without_short_movements[-1].set_param("Z", z)
e = current_gcode.get_param("E")
if z is not None:
if without_short_movements[-1].get_param("E") is not None:
without_short_movements[-1].set_param("E", without_short_movements[-1].get_param("E") + e)
continue
else:
without_short_movements.append(current_gcode)
return without_short_movements
def modify_loop_with_slope(loop_gcodes: List[Gcode], slope_steps: int, layer_height: float,
start_slope_height: float) -> \
List[Gcode]:
"""
generate gcode with slopes
:param start_slope_height:
:param loop_gcodes:
:param layer_height:
:param slope_steps:
:return:
"""
remaining_gcodes = list(loop_gcodes)
first_move_Z = next((gc for gc in loop_gcodes if gc.is_extruder_move() and gc.is_xy_movement()))
current_nozzle_finish_height = first_move_Z.state().Z
current_layer_level = current_nozzle_finish_height - layer_height
slope_length = calculate_length_of_lines(loop_gcodes)
slope_length_per_step = slope_length / slope_steps
slope_height_per_step = (layer_height - start_slope_height) / slope_steps
slope_increase = []
slope_decrease = []
move_to_position_gcode = Gcode(command="G1")
move_to_position_gcode.parameters.append(Parameter("Z", current_layer_level + slope_height_per_step))
move_to_position_gcode.comment = "Move nozzle in start slope position"
slope_increase.append(move_to_position_gcode)
for step in range(1, slope_steps + 1):
slope_length_per_step_left = slope_length_per_step
slope_height = slope_height_per_step * step + start_slope_height
slope_increase_step_gcodes = []
while round(slope_length_per_step_left, 6) > 0:
if len(remaining_gcodes) == 0:
break
if remaining_gcodes[0].is_xy_movement() is False: # any change of speed and acceleration
slope_increase.append(remaining_gcodes[0])
remaining_gcodes.remove(remaining_gcodes[0])
continue
minimal_line_to_draw = 0.1
while round(slope_length_per_step_left, 6) > 0:
if remaining_gcodes[0].move_length() - slope_length_per_step_left > minimal_line_to_draw:
gcode1, gcode2 = cut_gcode(remaining_gcodes[0], slope_length_per_step_left)
slope_increase_step_gcodes.append(gcode1)
slope_length_per_step_left -= gcode1.move_length()
remaining_gcodes[0] = gcode2
else:
slope_length_per_step_left -= remaining_gcodes[0].move_length()
slope_increase_step_gcodes.append(remaining_gcodes[0])
remaining_gcodes.remove(remaining_gcodes[0])
break
(slope_increase_step_gcodes,
slope_decrease_step_gcodes) = make_slope_step_brothers_gcodes(
slope_step_gcodes=slope_increase_step_gcodes,
layer_height=layer_height,
current_layer_level=current_layer_level,
slope_height=slope_height)
slope_increase.extend(slope_increase_step_gcodes)
if step != slope_steps: # sequence with zero extrusion
slope_decrease.extend(slope_decrease_step_gcodes)
for_return = []
for_return.extend(slope_increase)
for_return.extend(remaining_gcodes)
for_return.extend(slope_decrease)
# for_return.extend(reverse_movement_sequence(slope_decrease))
# lift = Gcode(command="G1", comment="Z lift")
# lift.set_param("Z", current_nozzle_finish_height + 0.1)
# for_return.append(lift)
# retract = Gcode("G1",comment="little retract before slope")
# retract.set_param("E", -0.05)
# for_return.insert(0, retract)
for_return = remove_very_little_moves(for_return)
return for_return
def convert_to_relative_extrude(gcodes: List[Gcode]):
gcodes_new = []
print("Convert gcode to relative extrude moves")
first_move = next((gc for gc in gcodes if gc.command == "G1"), None)
first_move_id = gcodes.index(first_move)
enable_relative_extrude = Gcode(command="M83", comment="enable relative extrude mode")
gcodes.insert(first_move_id, enable_relative_extrude)
for gcode in gcodes:
if gcode.command == "M82": # pass enable absolute mode command
continue
gcode_new = gcode.clone()
gcode_new.extrude_is_absolute = False
if len(gcodes_new) > 1:
gcode_new.previous_state = gcodes_new[-1].state()
if gcode.is_extruder_move():
if gcode.previous_state.extrude_is_absolute:
relative_extrude_length = gcode.get_param("E") - gcode_new.previous_state.E
gcode_new.set_param("E", relative_extrude_length)
gcodes_new.append(gcode_new)
else:
gcodes_new.append(gcode_new)
return gcodes_new
def include_speed_in_command(gcodes: List[Gcode]):
gcodes_new = []
gcode_speed_change = None
print("Include speed command in to move command")
for gcode in gcodes:
index = gcodes.index(gcode)
if index % 100 == 0:
print(f"{index} of {len(gcodes)}")
gcodes_new.append(gcode)
if gcode.command == "G1":
if gcode.get_param("F") is not None and gcode.is_any_movement() is False:
if gcode_speed_change is not None:
gcodes_new.remove(gcode_speed_change)
gcode_speed_change = gcode
continue
if gcode_speed_change is not None and gcode.is_any_movement() and gcode.get_param("F") is None:
gcode.set_param("F", gcode_speed_change.get_param("F"))
gcodes_new.remove(gcode_speed_change)
gcode_speed_change = None
return gcodes_new
def main():
parser = argparse.ArgumentParser(description='Seam hide post-process')
parser.add_argument('path', help='the path to the file')
parser.add_argument('--first_layer', dest='first_layer', default=0.3, type=float)
parser.add_argument('--other_layers', dest='other_layers', default=0.3, type=float)
parser.add_argument('--slope_min_length', dest='slope_min_length', default=5, type=float)
parser.add_argument('--slope_steps', dest='slope_steps', default=10, type=int)
parser.add_argument('--start_slope_height', dest='start_slope_height', default=0.1, type=float)
parser.add_argument('--save_to_file', dest='save_to_file', default=None, type=bool)
args = parser.parse_args()
first_layer_height = args.first_layer
layer_height = args.other_layers
slope_min_length = args.slope_min_length
slope_steps = args.slope_steps
start_slope_height = args.start_slope_height
save_to_file = args.save_to_file
file_path = args.path
# prusa_env_output_name = str(os.getenv('SLIC3R_PP_OUTPUT_NAME'))
gcodes = read_gcode_file(file_path)
# gcodes = include_speed_in_command(gcodes)
gcodes = convert_to_relative_extrude(gcodes)
closed_loop_ids = find_closed_loops(gcodes, 0.4, slope_min_length,
first_layer_height=first_layer_height) # start end indexes
closed_loops_with_data = []
for cl_id in closed_loop_ids:
print(f"Add a slope to perimeter {closed_loop_ids.index(cl_id)}")
modified_loop = modify_loop_with_slope(gcodes[cl_id[0]: cl_id[1] + 1], slope_steps,
layer_height=layer_height, start_slope_height=start_slope_height)
closed_loops_with_data.append((cl_id, modified_loop))
gcode_for_save = []
last_id = -1
print(f"Compiling the gcode file")
for original_gcode_id in range(len(gcodes)):
if original_gcode_id <= last_id:
continue
if len(closed_loops_with_data) > 0:
closed_loop = closed_loops_with_data[0]
closed_loop_id_range = closed_loop[0]
closed_loop_id_data = closed_loop[1]
closed_loop_start_id = closed_loop_id_range[0]
closed_loop_end_id = closed_loop_id_range[1]
if original_gcode_id != closed_loop_start_id:
gcode_for_save.append(gcodes[original_gcode_id])
else:
gcode_for_save.extend(closed_loop_id_data)
last_id = closed_loop_end_id
closed_loops_with_data.remove(closed_loops_with_data[0])
else:
gcode_for_save.append(gcodes[original_gcode_id])
destFilePath = file_path
if save_to_file is not None:
save_to_file
destFilePath = re.sub(r'\.gcode$', '', file_path) + '_post_processed.gcode'
delete_file_if_exists(destFilePath)
with open(destFilePath, "w", encoding='utf-8') as writefile:
for gcode in gcode_for_save:
writefile.write(str(gcode) + "\n")
writefile.close()
if __name__ == '__main__':
main()