-
Notifications
You must be signed in to change notification settings - Fork 6
/
nvae_model.py
577 lines (476 loc) · 23.2 KB
/
nvae_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for VAEBM. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
'''NVAE model, adapted from https://github.com/NVlabs/NVAE/blob/master/model.py'''
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from neural_operations import OPS, EncCombinerCell, DecCombinerCell, Conv2D, get_skip_connection, SE
from neural_ar_operations import AROPS, ARConv2d, ARInvertedResidual, MixLogCDFParam, mix_log_cdf_flow
from neural_ar_operations import ELUConv as ARELUConv
from torch.autograd import Variable
from torch.distributions.bernoulli import Bernoulli
from utils import get_stride_for_cell_type, get_input_size, groups_per_scale
from distributions import Normal, DiscMixLogistic, DiscLogistic, NormalDecoder
from thirdparty.inplaced_sync_batchnorm import SyncBatchNormSwish
CHANNEL_MULT = 2
class Cell(nn.Module):
def __init__(self, Cin, Cout, cell_type, arch, use_se):
super(Cell, self).__init__()
self.cell_type = cell_type
stride = get_stride_for_cell_type(self.cell_type)
self.skip = get_skip_connection(Cin, stride, affine=False, channel_mult=CHANNEL_MULT)
self.use_se = use_se
self._num_nodes = len(arch)
self._ops = nn.ModuleList()
for i in range(self._num_nodes):
stride = get_stride_for_cell_type(self.cell_type) if i == 0 else 1
C = Cin if i == 0 else Cout
primitive = arch[i]
op = OPS[primitive](C, Cout, stride)
self._ops.append(op)
# SE
if self.use_se:
self.se = SE(Cout, Cout)
def forward(self, s):
# skip branch
skip = self.skip(s)
for i in range(self._num_nodes):
s = self._ops[i](s)
s = self.se(s) if self.use_se else s
return skip + 0.1 * s
class CellAR(nn.Module):
def __init__(self, num_z, num_ftr, num_c, arch, mirror):
super(CellAR, self).__init__()
assert num_c % num_z == 0
self.cell_type = 'ar_nn'
# s0 will the random samples
ex = 6
self.conv = ARInvertedResidual(num_z, num_ftr, ex=ex, mirror=mirror)
self.use_mix_log_cdf = False
if self.use_mix_log_cdf:
self.param = MixLogCDFParam(num_z, num_mix=3, num_ftr=self.conv.hidden_dim, mirror=mirror)
else:
self.mu = ARELUConv(self.conv.hidden_dim, num_z, kernel_size=1, padding=0, masked=True, zero_diag=False,
weight_init_coeff=0.1, mirror=mirror)
def forward(self, z, ftr):
s = self.conv(z, ftr)
if self.use_mix_log_cdf:
logit_pi, mu, log_s, log_a, b = self.param(s)
new_z, log_det = mix_log_cdf_flow(z, logit_pi, mu, log_s, log_a, b)
else:
mu = self.mu(s)
new_z = (z - mu)
log_det = torch.zeros_like(new_z)
return new_z, log_det
class PairedCellAR(nn.Module):
def __init__(self, num_z, num_ftr, num_c, arch=None):
super(PairedCellAR, self).__init__()
self.cell1 = CellAR(num_z, num_ftr, num_c, arch, mirror=False)
self.cell2 = CellAR(num_z, num_ftr, num_c, arch, mirror=True)
def forward(self, z, ftr):
new_z, log_det1 = self.cell1(z, ftr)
new_z, log_det2 = self.cell2(new_z, ftr)
log_det1 += log_det2
return new_z, log_det1
class AutoEncoder(nn.Module):
def __init__(self, args, writer, arch_instance):
super(AutoEncoder, self).__init__()
self.writer = writer
self.arch_instance = arch_instance
self.dataset = args.dataset
self.crop_output = self.dataset == 'mnist'
self.use_se = args.use_se
self.res_dist = args.res_dist
self.num_bits = args.num_x_bits
self.num_latent_scales = args.num_latent_scales # number of spatial scales that latent layers will reside
self.num_groups_per_scale = args.num_groups_per_scale # number of groups of latent vars. per scale
self.num_latent_per_group = args.num_latent_per_group # number of latent vars. per group
self.groups_per_scale = groups_per_scale(self.num_latent_scales, self.num_groups_per_scale, args.ada_groups,
minimum_groups=args.min_groups_per_scale)
self.vanilla_vae = self.num_latent_scales == 1 and self.num_groups_per_scale == 1
# encoder parameteres
self.num_channels_enc = args.num_channels_enc
self.num_channels_dec = args.num_channels_dec
self.num_preprocess_blocks = args.num_preprocess_blocks # block is defined as series of Normal followed by Down
self.num_preprocess_cells = args.num_preprocess_cells # number of cells per block
self.num_cell_per_cond_enc = args.num_cell_per_cond_enc # number of cell for each conditional in encoder
# decoder parameters
# self.num_channels_dec = args.num_channels_dec
self.num_postprocess_blocks = args.num_postprocess_blocks
self.num_postprocess_cells = args.num_postprocess_cells
self.num_cell_per_cond_dec = args.num_cell_per_cond_dec # number of cell for each conditional in decoder
# general cell parameters
self.input_size = get_input_size(self.dataset)
# decoder param
self.num_mix_output = args.num_mixture_dec
# used for generative purpose
c_scaling = CHANNEL_MULT ** (self.num_preprocess_blocks + self.num_latent_scales - 1)
spatial_scaling = 2 ** (self.num_preprocess_blocks + self.num_latent_scales - 1)
prior_ftr0_size = (int(c_scaling * self.num_channels_dec), self.input_size // spatial_scaling,
self.input_size // spatial_scaling)
self.prior_ftr0 = nn.Parameter(torch.rand(size=prior_ftr0_size), requires_grad=True)
self.z0_size = [self.num_latent_per_group, self.input_size // spatial_scaling, self.input_size // spatial_scaling]
self.stem = self.init_stem()
self.pre_process, mult = self.init_pre_process(mult=1)
if self.vanilla_vae:
self.enc_tower = []
else:
self.enc_tower, mult = self.init_encoder_tower(mult)
self.with_nf = args.num_nf > 0
self.num_flows = args.num_nf
self.enc0 = self.init_encoder0(mult)
self.enc_sampler, self.dec_sampler, self.nf_cells, self.enc_kv, self.dec_kv, self.query = \
self.init_normal_sampler(mult)
if self.vanilla_vae:
self.dec_tower = []
self.stem_decoder = Conv2D(self.num_latent_per_group, mult * self.num_channels_enc, (1, 1), bias=True)
else:
self.dec_tower, mult = self.init_decoder_tower(mult)
self.post_process, mult = self.init_post_process(mult)
self.image_conditional = self.init_image_conditional(mult)
# collect all norm params in Conv2D and gamma param in batchnorm
self.all_log_norm = []
self.all_conv_layers = []
self.all_bn_layers = []
for n, layer in self.named_modules():
# if isinstance(layer, Conv2D) and '_ops' in n: # only chose those in cell
if isinstance(layer, Conv2D) or isinstance(layer, ARConv2d):
self.all_log_norm.append(layer.log_weight_norm)
self.all_conv_layers.append(layer)
if isinstance(layer, nn.BatchNorm2d) or isinstance(layer, nn.SyncBatchNorm) or \
isinstance(layer, SyncBatchNormSwish):
self.all_bn_layers.append(layer)
print('len log norm:', len(self.all_log_norm))
print('len bn:', len(self.all_bn_layers))
# left/right singular vectors used for SR
self.sr_u = {}
self.sr_v = {}
self.num_power_iter = 4
def init_stem(self):
Cout = self.num_channels_enc
Cin = 1 if self.dataset == 'mnist' else 3
stem = Conv2D(Cin, Cout, 3, padding=1, bias=True)
return stem
def init_pre_process(self, mult):
pre_process = nn.ModuleList()
for b in range(self.num_preprocess_blocks):
for c in range(self.num_preprocess_cells):
if c == self.num_preprocess_cells - 1:
arch = self.arch_instance['down_pre']
num_ci = int(self.num_channels_enc * mult)
num_co = int(CHANNEL_MULT * num_ci)
cell = Cell(num_ci, num_co, cell_type='down_pre', arch=arch, use_se=self.use_se)
mult = CHANNEL_MULT * mult
else:
arch = self.arch_instance['normal_pre']
num_c = self.num_channels_enc * mult
cell = Cell(num_c, num_c, cell_type='normal_pre', arch=arch, use_se=self.use_se)
pre_process.append(cell)
return pre_process, mult
def init_encoder_tower(self, mult):
enc_tower = nn.ModuleList()
for s in range(self.num_latent_scales):
for g in range(self.groups_per_scale[s]):
for c in range(self.num_cell_per_cond_enc):
arch = self.arch_instance['normal_enc']
num_c = int(self.num_channels_enc * mult)
cell = Cell(num_c, num_c, cell_type='normal_enc', arch=arch, use_se=self.use_se)
enc_tower.append(cell)
# add encoder combiner
if not (s == self.num_latent_scales - 1 and g == self.groups_per_scale[s] - 1):
num_ce = int(self.num_channels_enc * mult)
num_cd = int(self.num_channels_dec * mult)
cell = EncCombinerCell(num_ce, num_cd, num_ce, cell_type='combiner_enc')
enc_tower.append(cell)
# down cells after finishing a scale
if s < self.num_latent_scales - 1:
arch = self.arch_instance['down_enc']
num_ci = int(self.num_channels_enc * mult)
num_co = int(CHANNEL_MULT * num_ci)
cell = Cell(num_ci, num_co, cell_type='down_enc', arch=arch, use_se=self.use_se)
enc_tower.append(cell)
mult = CHANNEL_MULT * mult
return enc_tower, mult
def init_encoder0(self, mult):
num_c = int(self.num_channels_enc * mult)
cell = nn.Sequential(
nn.ELU(),
Conv2D(num_c, num_c, kernel_size=1, bias=True),
nn.ELU())
return cell
def init_normal_sampler(self, mult):
enc_sampler, dec_sampler, nf_cells = nn.ModuleList(), nn.ModuleList(), nn.ModuleList()
enc_kv, dec_kv, query = nn.ModuleList(), nn.ModuleList(), nn.ModuleList()
for s in range(self.num_latent_scales):
for g in range(self.groups_per_scale[self.num_latent_scales - s - 1]):
# build mu, sigma generator for encoder
num_c = int(self.num_channels_enc * mult)
cell = Conv2D(num_c, 2 * self.num_latent_per_group, kernel_size=3, padding=1, bias=True)
enc_sampler.append(cell)
# build NF
for n in range(self.num_flows):
arch = self.arch_instance['ar_nn']
num_c1 = int(self.num_channels_enc * mult)
num_c2 = 8 * self.num_latent_per_group # use 8x features
nf_cells.append(PairedCellAR(self.num_latent_per_group, num_c1, num_c2, arch))
if not (s == 0 and g == 0): # for the first group, we use a fixed standard Normal.
num_c = int(self.num_channels_dec * mult)
cell = nn.Sequential(
nn.ELU(),
Conv2D(num_c, 2 * self.num_latent_per_group, kernel_size=1, padding=0, bias=True))
dec_sampler.append(cell)
mult = mult / CHANNEL_MULT
return enc_sampler, dec_sampler, nf_cells, enc_kv, dec_kv, query
def init_decoder_tower(self, mult):
# create decoder tower
dec_tower = nn.ModuleList()
for s in range(self.num_latent_scales):
for g in range(self.groups_per_scale[self.num_latent_scales - s - 1]):
num_c = int(self.num_channels_dec * mult)
if not (s == 0 and g == 0):
for c in range(self.num_cell_per_cond_dec):
arch = self.arch_instance['normal_dec']
cell = Cell(num_c, num_c, cell_type='normal_dec', arch=arch, use_se=self.use_se)
dec_tower.append(cell)
cell = DecCombinerCell(num_c, self.num_latent_per_group, num_c, cell_type='combiner_dec')
dec_tower.append(cell)
# down cells after finishing a scale
if s < self.num_latent_scales - 1:
arch = self.arch_instance['up_dec']
num_ci = int(self.num_channels_dec * mult)
num_co = int(num_ci / CHANNEL_MULT)
cell = Cell(num_ci, num_co, cell_type='up_dec', arch=arch, use_se=self.use_se)
dec_tower.append(cell)
mult = mult / CHANNEL_MULT
return dec_tower, mult
def init_post_process(self, mult):
post_process = nn.ModuleList()
for b in range(self.num_postprocess_blocks):
for c in range(self.num_postprocess_cells):
if c == 0:
arch = self.arch_instance['up_post']
num_ci = int(self.num_channels_dec * mult)
num_co = int(num_ci / CHANNEL_MULT)
cell = Cell(num_ci, num_co, cell_type='up_post', arch=arch, use_se=self.use_se)
mult = mult / CHANNEL_MULT
else:
arch = self.arch_instance['normal_post']
num_c = int(self.num_channels_dec * mult)
cell = Cell(num_c, num_c, cell_type='normal_post', arch=arch, use_se=self.use_se)
post_process.append(cell)
return post_process, mult
def init_image_conditional(self, mult):
C_in = int(self.num_channels_dec * mult)
if self.dataset == 'mnist':
C_out = 1
else:
if self.num_mix_output == 1:
C_out = 2 * 3
else:
C_out = 10 * self.num_mix_output
return nn.Sequential(nn.ELU(),
Conv2D(C_in, C_out, 3, padding=1, bias=True))
def forward(self, x):
s = self.stem(2 * x - 1.0)
# perform pre-processing
for cell in self.pre_process:
s = cell(s)
# run the main encoder tower
combiner_cells_enc = []
combiner_cells_s = []
for cell in self.enc_tower:
if cell.cell_type == 'combiner_enc':
combiner_cells_enc.append(cell)
combiner_cells_s.append(s)
else:
s = cell(s)
# reverse combiner cells and their input for decoder
combiner_cells_enc.reverse()
combiner_cells_s.reverse()
idx_dec = 0
ftr = self.enc0(s) # this reduces the channel dimension
param0 = self.enc_sampler[idx_dec](ftr)
mu_q, log_sig_q = torch.chunk(param0, 2, dim=1)
dist = Normal(mu_q, log_sig_q) # for the first approx. posterior
z, _ = dist.sample()
log_q_conv = dist.log_p(z)
# apply normalizing flows
nf_offset = 0
for n in range(self.num_flows):
z, log_det = self.nf_cells[n](z, ftr)
log_q_conv -= log_det
nf_offset += self.num_flows
all_q = [dist]
all_log_q = [log_q_conv]
# To make sure we do not pass any deterministic features from x to decoder.
s = 0
# prior for z0
dist = Normal(mu=torch.zeros_like(z), log_sigma=torch.zeros_like(z))
log_p_conv = dist.log_p(z)
all_p = [dist]
all_log_p = [log_p_conv]
idx_dec = 0
s = self.prior_ftr0.unsqueeze(0)
batch_size = z.size(0)
s = s.expand(batch_size, -1, -1, -1)
for cell in self.dec_tower:
if cell.cell_type == 'combiner_dec':
if idx_dec > 0:
# form prior
param = self.dec_sampler[idx_dec - 1](s)
mu_p, log_sig_p = torch.chunk(param, 2, dim=1)
# form encoder
ftr = combiner_cells_enc[idx_dec - 1](combiner_cells_s[idx_dec - 1], s)
param = self.enc_sampler[idx_dec](ftr)
mu_q, log_sig_q = torch.chunk(param, 2, dim=1)
dist = Normal(mu_p + mu_q, log_sig_p + log_sig_q) if self.res_dist else Normal(mu_q, log_sig_q)
z, _ = dist.sample()
log_q_conv = dist.log_p(z)
# apply NF
for n in range(self.num_flows):
z, log_det = self.nf_cells[nf_offset + n](z, ftr)
log_q_conv -= log_det
nf_offset += self.num_flows
all_log_q.append(log_q_conv)
all_q.append(dist)
# evaluate log_p(z)
dist = Normal(mu_p, log_sig_p)
log_p_conv = dist.log_p(z)
all_p.append(dist)
all_log_p.append(log_p_conv)
# 'combiner_dec'
s = cell(s, z)
idx_dec += 1
else:
s = cell(s)
if self.vanilla_vae:
s = self.stem_decoder(z)
for cell in self.post_process:
s = cell(s)
logits = self.image_conditional(s)
# compute kl
kl_all = []
kl_diag = []
log_p, log_q = 0., 0.
for q, p, log_q_conv, log_p_conv in zip(all_q, all_p, all_log_q, all_log_p):
if self.with_nf:
kl_per_var = log_q_conv - log_p_conv
else:
kl_per_var = q.kl(p)
kl_diag.append(torch.mean(torch.sum(kl_per_var, dim=[2, 3]), dim=0))
kl_all.append(torch.sum(kl_per_var, dim=[1, 2, 3]))
log_q += torch.sum(log_q_conv, dim=[1, 2, 3])
log_p += torch.sum(log_p_conv, dim=[1, 2, 3])
return logits, log_q, log_p, kl_all, kl_diag
def sample(self, num_samples, t, eps_list = None):
scale_ind = 0
eps_idx = 0
log_p_list = []
z_list = []
z0_size = [num_samples] + self.z0_size
dist = Normal(mu=torch.zeros(z0_size).cuda(), log_sigma=torch.zeros(z0_size).cuda(), temp=t)
if eps_list is None:
z, _ = dist.sample()
else:
z = dist.sample_given_eps(eps_list[eps_idx])
eps_idx += 1
z_list.append(z)
log_p_list.append(dist.log_p(z))
idx_dec = 0
s = self.prior_ftr0.unsqueeze(0)
batch_size = z.size(0)
s = s.expand(batch_size, -1, -1, -1)
for cell in self.dec_tower:
if cell.cell_type == 'combiner_dec':
if idx_dec > 0:
# form prior
param = self.dec_sampler[idx_dec - 1](s)
mu, log_sigma = torch.chunk(param, 2, dim=1)
dist = Normal(mu, log_sigma, t)
if eps_list is None:
z, _ = dist.sample()
else:
z = dist.sample_given_eps(eps_list[eps_idx])
eps_idx += 1
z_list.append(z)
log_p_list.append(dist.log_p(z))
# 'combiner_dec'
s = cell(s, z)
idx_dec += 1
else:
s = cell(s)
if cell.cell_type == 'up_dec':
scale_ind += 1
log_p_total = 0.
for log_p_conv in log_p_list:
log_p_zi = torch.sum(log_p_conv, dim=[1, 2, 3])
log_p_total += log_p_zi
if self.vanilla_vae:
s = self.stem_decoder(z)
for cell in self.post_process:
s = cell(s)
logits = self.image_conditional(s)
return logits, z_list, log_p_total
def decoder_output(self, logits):
if self.dataset == 'mnist':
return Bernoulli(logits=logits)
elif self.dataset in {'stacked_mnist', 'cifar10', 'celeba_64', 'celeba_256', 'imagenet_32', 'imagenet_64', 'ffhq',
'lsun_bedroom_128', 'lsun_bedroom_256', 'lsun_church_128', 'lsun_church_64'}:
if self.num_mix_output == 1:
return NormalDecoder(logits, num_bits=self.num_bits)
else:
return DiscMixLogistic(logits, self.num_mix_output, num_bits=self.num_bits)
else:
raise NotImplementedError
def spectral_norm_parallel(self):
""" This method computes spectral normalization for all conv layers in parallel. This method should be called
after calling the forward method of all the conv layers in each iteration. """
weights = {} # a dictionary indexed by the shape of weights
for l in self.all_conv_layers:
weight = l.weight_normalized
weight_mat = weight.view(weight.size(0), -1)
if weight_mat.shape not in weights:
weights[weight_mat.shape] = []
weights[weight_mat.shape].append(weight_mat)
loss = 0
for i in weights:
weights[i] = torch.stack(weights[i], dim=0)
with torch.no_grad():
num_iter = self.num_power_iter
if i not in self.sr_u:
num_w, row, col = weights[i].shape
self.sr_u[i] = F.normalize(torch.ones(num_w, row).normal_(0, 1).cuda(), dim=1, eps=1e-3)
self.sr_v[i] = F.normalize(torch.ones(num_w, col).normal_(0, 1).cuda(), dim=1, eps=1e-3)
# increase the number of iterations for the first time
num_iter = 10 * self.num_power_iter
for j in range(num_iter):
# Spectral norm of weight equals to `u^T W v`, where `u` and `v`
# are the first left and right singular vectors.
# This power iteration produces approximations of `u` and `v`.
self.sr_v[i] = F.normalize(torch.matmul(self.sr_u[i].unsqueeze(1), weights[i]).squeeze(1),
dim=1, eps=1e-3) # bx1xr * bxrxc --> bx1xc --> bxc
self.sr_u[i] = F.normalize(torch.matmul(weights[i], self.sr_v[i].unsqueeze(2)).squeeze(2),
dim=1, eps=1e-3) # bxrxc * bxcx1 --> bxrx1 --> bxr
sigma = torch.matmul(self.sr_u[i].unsqueeze(1), torch.matmul(weights[i], self.sr_v[i].unsqueeze(2)))
loss += torch.sum(sigma)
return loss
def batchnorm_loss(self):
loss = 0
for l in self.all_bn_layers:
if l.affine:
loss += torch.max(torch.abs(l.weight))
return loss
def max_norm(self):
mx = []
"""
for p in self.all_log_norm:
mx.append(torch.exp(torch.max(p)))
"""
for l in self.all_conv_layers:
mx.append(l.get_spectral_norm())
return torch.stack(mx)