-
Notifications
You must be signed in to change notification settings - Fork 164
/
evaluate.py
188 lines (161 loc) · 8.16 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# ---------------------------------------------------------------
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for NVAE. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import argparse
import torch
import numpy as np
import os
import matplotlib.pyplot as plt
from time import time
from torch.multiprocessing import Process
from torch.cuda.amp import autocast
from model import AutoEncoder
import utils
import datasets
from train import test, init_processes, test_vae_fid
def set_bn(model, bn_eval_mode, num_samples=1, t=1.0, iter=100):
if bn_eval_mode:
model.eval()
else:
model.train()
with autocast():
for i in range(iter):
if i % 10 == 0:
print('setting BN statistics iter %d out of %d' % (i+1, iter))
model.sample(num_samples, t)
model.eval()
def main(eval_args):
# ensures that weight initializations are all the same
logging = utils.Logger(eval_args.local_rank, eval_args.save)
# load a checkpoint
logging.info('loading the model at:')
logging.info(eval_args.checkpoint)
checkpoint = torch.load(eval_args.checkpoint, map_location='cpu')
args = checkpoint['args']
if not hasattr(args, 'ada_groups'):
logging.info('old model, no ada groups was found.')
args.ada_groups = False
if not hasattr(args, 'min_groups_per_scale'):
logging.info('old model, no min_groups_per_scale was found.')
args.min_groups_per_scale = 1
if not hasattr(args, 'num_mixture_dec'):
logging.info('old model, no num_mixture_dec was found.')
args.num_mixture_dec = 10
if eval_args.batch_size > 0:
args.batch_size = eval_args.batch_size
logging.info('loaded the model at epoch %d', checkpoint['epoch'])
arch_instance = utils.get_arch_cells(args.arch_instance)
model = AutoEncoder(args, None, arch_instance)
# Loading is not strict because of self.weight_normalized in Conv2D class in neural_operations. This variable
# is only used for computing the spectral normalization and it is safe not to load it. Some of our earlier models
# did not have this variable.
model.load_state_dict(checkpoint['state_dict'], strict=False)
model = model.cuda()
logging.info('args = %s', args)
logging.info('num conv layers: %d', len(model.all_conv_layers))
logging.info('param size = %fM ', utils.count_parameters_in_M(model))
if eval_args.eval_mode == 'evaluate':
# load train valid queue
args.data = eval_args.data
train_queue, valid_queue, num_classes = datasets.get_loaders(args)
if eval_args.eval_on_train:
logging.info('Using the training data for eval.')
valid_queue = train_queue
# get number of bits
num_output = utils.num_output(args.dataset)
bpd_coeff = 1. / np.log(2.) / num_output
valid_neg_log_p, valid_nelbo = test(valid_queue, model, num_samples=eval_args.num_iw_samples, args=args, logging=logging)
logging.info('final valid nelbo %f', valid_nelbo)
logging.info('final valid neg log p %f', valid_neg_log_p)
logging.info('final valid nelbo in bpd %f', valid_nelbo * bpd_coeff)
logging.info('final valid neg log p in bpd %f', valid_neg_log_p * bpd_coeff)
elif eval_args.eval_mode == 'evaluate_fid':
bn_eval_mode = not eval_args.readjust_bn
set_bn(model, bn_eval_mode, num_samples=2, t=eval_args.temp, iter=500)
args.fid_dir = eval_args.fid_dir
args.num_process_per_node, args.num_proc_node = eval_args.world_size, 1 # evaluate only one 1 node
fid = test_vae_fid(model, args, total_fid_samples=50000)
logging.info('fid is %f' % fid)
else:
bn_eval_mode = not eval_args.readjust_bn
total_samples = 50000 // eval_args.world_size # num images per gpu
num_samples = 100 # sampling batch size
num_iter = int(np.ceil(total_samples / num_samples)) # num iterations per gpu
with torch.no_grad():
n = int(np.floor(np.sqrt(num_samples)))
set_bn(model, bn_eval_mode, num_samples=16, t=eval_args.temp, iter=500)
for ind in range(num_iter): # sampling is repeated.
torch.cuda.synchronize()
start = time()
with autocast():
logits = model.sample(num_samples, eval_args.temp)
output = model.decoder_output(logits)
output_img = output.mean if isinstance(output, torch.distributions.bernoulli.Bernoulli) \
else output.sample()
torch.cuda.synchronize()
end = time()
logging.info('sampling time per batch: %0.3f sec', (end - start))
visualize = False
if visualize:
output_tiled = utils.tile_image(output_img, n).cpu().numpy().transpose(1, 2, 0)
output_tiled = np.asarray(output_tiled * 255, dtype=np.uint8)
output_tiled = np.squeeze(output_tiled)
plt.imshow(output_tiled)
plt.show()
else:
file_path = os.path.join(eval_args.save, 'gpu_%d_samples_%d.npz' % (eval_args.local_rank, ind))
np.savez_compressed(file_path, samples=output_img.cpu().numpy())
logging.info('Saved at: {}'.format(file_path))
if __name__ == '__main__':
parser = argparse.ArgumentParser('encoder decoder examiner')
# experimental results
parser.add_argument('--checkpoint', type=str, default='/tmp/expr/checkpoint.pt',
help='location of the checkpoint')
parser.add_argument('--save', type=str, default='/tmp/expr',
help='location of the checkpoint')
parser.add_argument('--eval_mode', type=str, default='sample', choices=['sample', 'evaluate', 'evaluate_fid'],
help='evaluation mode. you can choose between sample or evaluate.')
parser.add_argument('--eval_on_train', action='store_true', default=False,
help='Settings this to true will evaluate the model on training data.')
parser.add_argument('--data', type=str, default='/tmp/data',
help='location of the data corpus')
parser.add_argument('--readjust_bn', action='store_true', default=False,
help='adding this flag will enable readjusting BN statistics.')
parser.add_argument('--temp', type=float, default=0.7,
help='The temperature used for sampling.')
parser.add_argument('--num_iw_samples', type=int, default=1000,
help='The number of IW samples used in test_ll mode.')
parser.add_argument('--fid_dir', type=str, default='/tmp/fid-stats',
help='path to directory where fid related files are stored')
parser.add_argument('--batch_size', type=int, default=0,
help='Batch size used during evaluation. If set to zero, training batch size is used.')
# DDP.
parser.add_argument('--local_rank', type=int, default=0,
help='rank of process')
parser.add_argument('--world_size', type=int, default=1,
help='number of gpus')
parser.add_argument('--seed', type=int, default=1,
help='seed used for initialization')
parser.add_argument('--master_address', type=str, default='127.0.0.1',
help='address for master')
args = parser.parse_args()
utils.create_exp_dir(args.save)
size = args.world_size
if size > 1:
args.distributed = True
processes = []
for rank in range(size):
args.local_rank = rank
p = Process(target=init_processes, args=(rank, size, main, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
# for debugging
print('starting in debug mode')
args.distributed = True
init_processes(0, size, main, args)