-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
232 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
from pyBL.fitting import BLRPRxConfig, BLRPRxFitter | ||
import numba as nb | ||
import numpy as np | ||
import timeit | ||
from pyBL.timeseries import IntensityMRLE | ||
from pyBL.fitting import BLRPRxFitter | ||
from pyBL.models import BLRPRx, Stat_Props, BLRPRx_params | ||
import os | ||
import pandas as pd | ||
|
||
timescale = [1, 3600, 3 * 3600, 6 * 3600, 24 * 3600] | ||
props = [ | ||
Stat_Props.MEAN, | ||
Stat_Props.CVAR, | ||
Stat_Props.AR1, | ||
Stat_Props.SKEWNESS, | ||
Stat_Props.pDRY, | ||
] | ||
|
||
# Set timezone to UTC | ||
os.environ["TZ"] = "UTC" | ||
|
||
|
||
def rain_timeseries(): | ||
data_path = os.path.join(os.path.dirname(__file__), "data", "elmdon.csv") | ||
data = pd.read_csv(data_path, parse_dates=["datatime"]) | ||
data["datatime"] = data["datatime"].astype("int64") // 10**9 | ||
time = data["datatime"].to_numpy() | ||
intensity = data["Elmdon"].to_numpy() | ||
return time, intensity | ||
|
||
|
||
def month_start_end(): | ||
# Generate first day of each month from 1980 to 2010 | ||
day = pd.date_range(start="1980-01-01", end="2000-01-01", freq="MS") | ||
# Convert to unix time | ||
month_srt = day.astype("int64") // 10**9 | ||
month_end = month_srt | ||
# Stack them together | ||
month_interval = np.stack((month_srt[:-1], month_end[1:]), axis=1) | ||
# Group the month_interval by month | ||
month_interval = np.reshape(month_interval, (-1, 12, 2)) | ||
return month_interval | ||
|
||
|
||
time, intensity = rain_timeseries() | ||
mrle = IntensityMRLE(time, intensity / 3600) | ||
month_interval_each_year = month_start_end() | ||
|
||
# Segment the mrle timeseries into months from 1900 to 2100 | ||
mrle_month_each = np.empty( | ||
(12, len(month_interval_each_year), 5), dtype=IntensityMRLE | ||
) # (month, year, scale) | ||
for i, year in enumerate(month_interval_each_year): | ||
for j, month in enumerate(year): | ||
for k, scale in enumerate(timescale): | ||
mrle_month_each[j, i, k] = mrle[month[0] : month[1]].rescale( | ||
scale | ||
) # 1s scale | ||
|
||
# MRLE that stores the total of each month | ||
mrle_month_total = np.empty((12, 5), dtype=IntensityMRLE) # (month, scale) | ||
for i in range(12): | ||
for j in range(len(mrle_month_each[0])): | ||
for k, scale in enumerate(timescale): | ||
if j == 0: | ||
mrle_month_total[i, k] = IntensityMRLE(scale=scale) | ||
mrle_month_total[i, k].add(mrle_month_each[i, j, k], sequential=True) | ||
|
||
stats_month = np.zeros((12, 5, 5)) # (month, scale, stats) | ||
for month in range(12): | ||
for scale in range(5): | ||
model = mrle_month_total[month, scale] | ||
stats_month[month, scale, :] = [ | ||
model.mean(), | ||
model.cvar(), | ||
model.acf(), | ||
model.skewness(), | ||
model.pDry(0), | ||
] | ||
|
||
stats_month_seperate = np.zeros( | ||
(12, len(month_interval_each_year), 5, 5) | ||
) # (month, year, scale, stats) | ||
for month in range(12): | ||
for year in range(len(month_interval_each_year)): | ||
for scale in range(5): | ||
model = mrle_month_each[month, year, scale] | ||
stats_month_seperate[month, year, scale, :] = [ | ||
model.mean(), | ||
model.cvar(), | ||
model.acf(), | ||
model.skewness(), | ||
model.pDry(0), | ||
] | ||
|
||
stats_weight = 1 / np.nanvar( | ||
stats_month_seperate, axis=1 | ||
) # (month, scale, stats) (12, 5, 5) | ||
|
||
target_np = stats_month[0, 1:, :] | ||
weight_np = stats_weight[0, 1:, :] | ||
|
||
target = BLRPRxConfig.default_target([1, 3, 6, 24]) | ||
target[Stat_Props.MEAN] = target_np[:, 0] | ||
target[Stat_Props.CVAR] = target_np[:, 1] | ||
target[Stat_Props.AR1] = target_np[:, 2] | ||
target[Stat_Props.SKEWNESS] = target_np[:, 3] | ||
|
||
weight = BLRPRxConfig.default_weight([1, 3, 6, 24]) | ||
weight[Stat_Props.MEAN] = weight_np[:, 0] | ||
weight[Stat_Props.CVAR] = weight_np[:, 1] | ||
weight[Stat_Props.AR1] = weight_np[:, 2] | ||
weight[Stat_Props.SKEWNESS] = weight_np[:, 3] | ||
|
||
mask = BLRPRxConfig.default_mask([1, 3, 6, 24]) | ||
mask[Stat_Props.MEAN] = [1, 0, 0, 0] | ||
mask[Stat_Props.CVAR] = [1, 1, 1, 1] | ||
mask[Stat_Props.AR1] = [1, 1, 1, 1] | ||
mask[Stat_Props.SKEWNESS] = [1, 1, 1, 1] | ||
|
||
config = BLRPRxConfig(target=target, weight=weight, mask=mask) | ||
a = config.get_evaluation_func() | ||
arr = np.array([0.016679733103341976, 0.08270236178820184, 0.34970877070925505, 9.017352714561754, 0.9931496975448589, 1.01, 0.971862948182735]) | ||
|
||
old_config = BLRPRxFitter() | ||
model = BLRPRx() | ||
|
||
print(a(arr)) | ||
print(old_config._evaluate(arr, target_np, weight_np, model)) | ||
|
||
#print(timeit.timeit(lambda: a(arr), number=389253)) | ||
#print(timeit.timeit(lambda: old_config._evaluate(arr, target_np, weight_np, model), number=389253)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
from pyBL.timeseries import IntensityMRLE | ||
from pyBL.fitting import BLRPRxFitter | ||
from pyBL.models import BLRPRx, Stat_Props, BLRPRx_params | ||
import os | ||
import pandas as pd | ||
import numpy as np | ||
|
||
timescale = [1, 3600, 3 * 3600, 6 * 3600, 24 * 3600] | ||
props = [ | ||
Stat_Props.MEAN, | ||
Stat_Props.CVAR, | ||
Stat_Props.AR1, | ||
Stat_Props.SKEWNESS, | ||
Stat_Props.pDRY, | ||
] | ||
|
||
# Set timezone to UTC | ||
os.environ["TZ"] = "UTC" | ||
|
||
|
||
def rain_timeseries(): | ||
data_path = os.path.join(os.path.dirname(__file__), "data", "elmdon.csv") | ||
data = pd.read_csv(data_path, parse_dates=["datatime"]) | ||
data["datatime"] = data["datatime"].astype("int64") // 10**9 | ||
time = data["datatime"].to_numpy() | ||
intensity = data["Elmdon"].to_numpy() | ||
return time, intensity | ||
|
||
|
||
def month_start_end(): | ||
# Generate first day of each month from 1980 to 2010 | ||
day = pd.date_range(start="1980-01-01", end="2000-01-01", freq="MS") | ||
# Convert to unix time | ||
month_srt = day.astype("int64") // 10**9 | ||
month_end = month_srt | ||
# Stack them together | ||
month_interval = np.stack((month_srt[:-1], month_end[1:]), axis=1) | ||
# Group the month_interval by month | ||
month_interval = np.reshape(month_interval, (-1, 12, 2)) | ||
return month_interval | ||
|
||
|
||
time, intensity = rain_timeseries() | ||
mrle = IntensityMRLE(time, intensity / 3600) | ||
month_interval_each_year = month_start_end() | ||
|
||
# Segment the mrle timeseries into months from 1900 to 2100 | ||
mrle_month_each = np.empty( | ||
(12, len(month_interval_each_year), 5), dtype=IntensityMRLE | ||
) # (month, year, scale) | ||
for i, year in enumerate(month_interval_each_year): | ||
for j, month in enumerate(year): | ||
for k, scale in enumerate(timescale): | ||
mrle_month_each[j, i, k] = mrle[month[0] : month[1]].rescale( | ||
scale | ||
) # 1s scale | ||
|
||
# MRLE that stores the total of each month | ||
mrle_month_total = np.empty((12, 5), dtype=IntensityMRLE) # (month, scale) | ||
for i in range(12): | ||
for j in range(len(mrle_month_each[0])): | ||
for k, scale in enumerate(timescale): | ||
if j == 0: | ||
mrle_month_total[i, k] = IntensityMRLE(scale=scale) | ||
mrle_month_total[i, k].add(mrle_month_each[i, j, k], sequential=True) | ||
|
||
stats_month = np.zeros((12, 5, 5)) # (month, scale, stats) | ||
for month in range(12): | ||
for scale in range(5): | ||
model = mrle_month_total[month, scale] | ||
stats_month[month, scale, :] = [ | ||
model.mean(), | ||
model.cvar(), | ||
model.acf(), | ||
model.skewness(), | ||
model.pDry(0), | ||
] | ||
|
||
stats_month_seperate = np.zeros( | ||
(12, len(month_interval_each_year), 5, 5) | ||
) # (month, year, scale, stats) | ||
for month in range(12): | ||
for year in range(len(month_interval_each_year)): | ||
for scale in range(5): | ||
model = mrle_month_each[month, year, scale] | ||
stats_month_seperate[month, year, scale, :] = [ | ||
model.mean(), | ||
model.cvar(), | ||
model.acf(), | ||
model.skewness(), | ||
model.pDry(0), | ||
] | ||
|
||
stats_weight = 1 / np.nanvar( | ||
stats_month_seperate, axis=1 | ||
) # (month, scale, stats) (12, 5, 5) | ||
|
||
target = stats_month[:, 1:, :] | ||
weight = stats_weight[:, 1:, :] |