-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest.py
387 lines (265 loc) · 12 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import matplotlib.pyplot as plt
import numpy as np
import random
from functools import reduce
import itertools
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, datasets, models
from collections import defaultdict
import torch.nn.functional as F
import torch
import torch.optim as optim
from torch.optim import lr_scheduler
import time
import copy
def generate_random_data(height, width, count):
x, y = zip(*[generate_img_and_mask(height, width) for i in range(0, count)])
X = np.asarray(x) * 255
X = X.repeat(3, axis=1).transpose([0, 2, 3, 1]).astype(np.uint8)
Y = np.asarray(y)
return X, Y
def generate_img_and_mask(height, width):
shape = (height, width)
triangle_location = get_random_location(*shape)
circle_location1 = get_random_location(*shape, zoom=0.7)
circle_location2 = get_random_location(*shape, zoom=0.5)
mesh_location = get_random_location(*shape)
square_location = get_random_location(*shape, zoom=0.8)
plus_location = get_random_location(*shape, zoom=1.2)
# Create input image
arr = np.zeros(shape, dtype=bool)
arr = add_triangle(arr, *triangle_location)
arr = add_circle(arr, *circle_location1)
arr = add_circle(arr, *circle_location2, fill=True)
arr = add_mesh_square(arr, *mesh_location)
arr = add_filled_square(arr, *square_location)
arr = add_plus(arr, *plus_location)
arr = np.reshape(arr, (1, height, width)).astype(np.float32)
# Create target masks
masks = np.asarray([
add_filled_square(np.zeros(shape, dtype=bool), *square_location),
add_circle(np.zeros(shape, dtype=bool), *circle_location2, fill=True),
add_triangle(np.zeros(shape, dtype=bool), *triangle_location),
add_circle(np.zeros(shape, dtype=bool), *circle_location1),
add_filled_square(np.zeros(shape, dtype=bool), *mesh_location),
# add_mesh_square(np.zeros(shape, dtype=bool), *mesh_location),
add_plus(np.zeros(shape, dtype=bool), *plus_location)
]).astype(np.float32)
return arr, masks
def add_square(arr, x, y, size):
s = int(size / 2)
arr[x-s,y-s:y+s] = True
arr[x+s,y-s:y+s] = True
arr[x-s:x+s,y-s] = True
arr[x-s:x+s,y+s] = True
return arr
def add_filled_square(arr, x, y, size):
s = int(size / 2)
xx, yy = np.mgrid[:arr.shape[0], :arr.shape[1]]
return np.logical_or(arr, logical_and([xx > x - s, xx < x + s, yy > y - s, yy < y + s]))
def logical_and(arrays):
new_array = np.ones(arrays[0].shape, dtype=bool)
for a in arrays:
new_array = np.logical_and(new_array, a)
return new_array
def add_mesh_square(arr, x, y, size):
s = int(size / 2)
xx, yy = np.mgrid[:arr.shape[0], :arr.shape[1]]
return np.logical_or(arr, logical_and([xx > x - s, xx < x + s, xx % 2 == 1, yy > y - s, yy < y + s, yy % 2 == 1]))
def add_triangle(arr, x, y, size):
s = int(size / 2)
triangle = np.tril(np.ones((size, size), dtype=bool))
arr[x-s:x-s+triangle.shape[0],y-s:y-s+triangle.shape[1]] = triangle
return arr
def add_circle(arr, x, y, size, fill=False):
xx, yy = np.mgrid[:arr.shape[0], :arr.shape[1]]
circle = np.sqrt((xx - x) ** 2 + (yy - y) ** 2)
new_arr = np.logical_or(arr, np.logical_and(circle < size, circle >= size * 0.7 if not fill else True))
return new_arr
def add_plus(arr, x, y, size):
s = int(size / 2)
arr[x-1:x+1,y-s:y+s] = True
arr[x-s:x+s,y-1:y+1] = True
return arr
def get_random_location(width, height, zoom=1.0):
x = int(width * random.uniform(0.1, 0.9))
y = int(height * random.uniform(0.1, 0.9))
size = int(min(width, height) * random.uniform(0.06, 0.12) * zoom)
return (x, y, size)
def plot_img_array(img_array, ncol=3):
nrow = len(img_array) // ncol
f, plots = plt.subplots(nrow, ncol, sharex='all', sharey='all', figsize=(ncol * 4, nrow * 4))
for i in range(len(img_array)):
plots[i // ncol, i % ncol]
plots[i // ncol, i % ncol].imshow(img_array[i])
def plot_side_by_side(img_arrays):
flatten_list = reduce(lambda x,y: x+y, zip(*img_arrays))
plot_img_array(np.array(flatten_list), ncol=len(img_arrays))
def plot_errors(results_dict, title):
markers = itertools.cycle(('+', 'x', 'o'))
plt.title('{}'.format(title))
for label, result in sorted(results_dict.items()):
plt.plot(result, marker=next(markers), label=label)
plt.ylabel('dice_coef')
plt.xlabel('epoch')
plt.legend(loc=3, bbox_to_anchor=(1, 0))
plt.show()
def masks_to_colorimg(masks):
colors = np.asarray([(201, 58, 64), (242, 207, 1), (0, 152, 75), (101, 172, 228),(56, 34, 132), (160, 194, 56)])
colorimg = np.ones((masks.shape[1], masks.shape[2], 3), dtype=np.float32) * 255
channels, height, width = masks.shape
for y in range(height):
for x in range(width):
selected_colors = colors[masks[:,y,x] > 0.5]
if len(selected_colors) > 0:
colorimg[y,x,:] = np.mean(selected_colors, axis=0)
return colorimg.astype(np.uint8)
def generate_images_and_masks_then_plot():
# Generate some random images
input_images, target_masks = generate_random_data(192, 192, count=3)
for x in [input_images, target_masks]:
print(x.shape)
print(x.min(), x.max())
# Change channel-order and make 3 channels for matplot
input_images_rgb = [x.astype(np.uint8) for x in input_images]
# Map each channel (i.e. class) to each color
target_masks_rgb = [masks_to_colorimg(x) for x in target_masks]
# Left: Input image (black and white), Right: Target mask (6ch)
plot_side_by_side([input_images_rgb, target_masks_rgb])
def reverse_transform(inp):
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
inp = (inp * 255).astype(np.uint8)
return inp
class SimDataset(Dataset):
def __init__(self, count, transform=None):
self.input_images, self.target_masks = generate_random_data(192, 192, count=count)
self.transform = transform
def __len__(self):
return len(self.input_images)
def __getitem__(self, idx):
image = self.input_images[idx]
mask = self.target_masks[idx]
if self.transform:
image = self.transform(image)
return [image, mask]
def get_data_loaders():
# use the same transformations for train/val in this example
trans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # imagenet
])
train_set = SimDataset(100, transform = trans)
val_set = SimDataset(20, transform = trans)
image_datasets = {
'train': train_set, 'val': val_set
}
batch_size = 25
dataloaders = {
'train': DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0),
'val': DataLoader(val_set, batch_size=batch_size, shuffle=True, num_workers=0)
}
return dataloaders
def dice_loss(pred, target, smooth=1.):
pred = pred.contiguous()
target = target.contiguous()
intersection = (pred * target).sum(dim=2).sum(dim=2)
loss = (1 - ((2. * intersection + smooth) / (pred.sum(dim=2).sum(dim=2) + target.sum(dim=2).sum(dim=2) + smooth)))
return loss.mean()
def calc_loss(pred, target, metrics, bce_weight=0.5):
bce = F.binary_cross_entropy_with_logits(pred, target)
pred = F.sigmoid(pred)
dice = dice_loss(pred, target)
loss = bce * bce_weight + dice * (1 - bce_weight)
metrics['bce'] += bce.data.cpu().numpy() * target.size(0)
metrics['dice'] += dice.data.cpu().numpy() * target.size(0)
metrics['loss'] += loss.data.cpu().numpy() * target.size(0)
return loss
def print_metrics(metrics, epoch_samples, phase):
outputs = []
for k in metrics.keys():
outputs.append("{}: {:4f}".format(k, metrics[k] / epoch_samples))
print("{}: {}".format(phase, ", ".join(outputs)))
def train_model(model, optimizer, scheduler, num_epochs=25):
dataloaders = get_data_loaders()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = 1e10
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
since = time.time()
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
for param_group in optimizer.param_groups:
print("LR", param_group['lr'])
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
metrics = defaultdict(float)
epoch_samples = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
loss = calc_loss(outputs, labels, metrics)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
epoch_samples += inputs.size(0)
print_metrics(metrics, epoch_samples, phase)
epoch_loss = metrics['loss'] / epoch_samples
# deep copy the model
if phase == 'val' and epoch_loss < best_loss:
print("saving best model")
best_loss = epoch_loss
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - since
print('{:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val loss: {:4f}'.format(best_loss))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def run(UNet):
num_class = 6
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = UNet(num_class).to(device)
optimizer_ft = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.1)
model = train_model(model, optimizer_ft, exp_lr_scheduler, num_epochs=60)
model.eval() # Set model to the evaluation mode
trans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # imagenet
])
# # Create another simulation dataset for test
test_dataset = SimDataset(3, transform = trans)
test_loader = DataLoader(test_dataset, batch_size=3, shuffle=False, num_workers=0)
# Get the first batch
inputs, labels = next(iter(test_loader))
inputs = inputs.to(device)
labels = labels.to(device)
# Predict
pred = model(inputs)
# The loss functions include the sigmoid function.
pred = F.sigmoid(pred)
pred = pred.data.cpu().numpy()
print(pred.shape)
# Change channel-order and make 3 channels for matplot
input_images_rgb = [reverse_transform(x) for x in inputs.cpu()]
# Map each channel (i.e. class) to each color
target_masks_rgb = [masks_to_colorimg(x) for x in labels.cpu().numpy()]
pred_rgb = [masks_to_colorimg(x) for x in pred]
plot_side_by_side([input_images_rgb, target_masks_rgb, pred_rgb])