-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN.py
73 lines (56 loc) · 2.24 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import numpy as np
from sklearn.model_selection import KFold
from skimage.io import imread
from skimage.transform import resize
import tensorflow as tf
from tensorflow.keras import layers, models
# Specify the main directory where the 8 subdirectories for dog breeds are located.
main_directory = 'dog-breeds'
# Define the input image size.
input_size = (128, 128)
# Load and preprocess the dataset.
def load_dataset(dataset_dir):
X = [] # Features
y = [] # Corresponding labels (breeds)
breed_labels = os.listdir(dataset_dir)
for label, breed in enumerate(breed_labels):
breed_dir = os.path.join(dataset_dir, breed)
for image_file in os.listdir(breed_dir):
image_path = os.path.join(breed_dir, image_file)
image = imread(image_path)
image = resize(image, input_size)
X.append(image)
y.append(label)
return np.array(X), np.array(y)
X, y = load_dataset(main_directory)
# Define the CNN architecture
def create_cnn_model():
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(8, activation='softmax') # Assuming 8 dog breeds
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
# Custom wrapper function for cross-validation
def cnn_cv_score(model, X, y, cv):
scores = []
for train_index, test_index in cv.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
model.fit(X_train, y_train, epochs=5, batch_size=32, verbose=0)
_, accuracy = model.evaluate(X_test, y_test, verbose=0)
scores.append(accuracy)
return np.array(scores)
# Perform cross-validation to get multiple accuracy values
cv = KFold(n_splits=10, shuffle=True, random_state=42)
cv_scores = cnn_cv_score(create_cnn_model(), X, y, cv)
# Print the accuracy for each fold
for accuracy in cv_scores:
print(f"{accuracy * 100:.2f}")
# Compute and print the mean accuracy across all folds
print(f"Accuracy for Fold :{np.mean(cv_scores) * 100:.2f}")