-
Notifications
You must be signed in to change notification settings - Fork 2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Basic union impl * nits * Remove unused imports * nit
- Loading branch information
Showing
9 changed files
with
333 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
from collections import OrderedDict | ||
import torch | ||
import torch.nn as nn | ||
|
||
try: | ||
from sgm.modules.diffusionmodules.openaimodel import ( | ||
timestep_embedding, | ||
) | ||
|
||
using_sgm = True | ||
except ImportError: | ||
from ldm.modules.diffusionmodules.openaimodel import ( | ||
timestep_embedding, | ||
) | ||
|
||
using_sgm = False | ||
|
||
|
||
def attention_pytorch( | ||
q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False | ||
): | ||
if skip_reshape: | ||
b, _, _, dim_head = q.shape | ||
else: | ||
b, _, dim_head = q.shape | ||
dim_head //= heads | ||
q, k, v = map( | ||
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), | ||
(q, k, v), | ||
) | ||
|
||
out = torch.nn.functional.scaled_dot_product_attention( | ||
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False | ||
) | ||
out = out.transpose(1, 2).reshape(b, -1, heads * dim_head) | ||
return out | ||
|
||
|
||
class ControlAddEmbedding(nn.Module): | ||
def __init__( | ||
self, | ||
in_dim, | ||
out_dim, | ||
num_control_type, | ||
dtype=None, | ||
device=None, | ||
): | ||
super().__init__() | ||
self.num_control_type = num_control_type | ||
self.in_dim = in_dim | ||
self.linear_1 = nn.Linear( | ||
in_dim * num_control_type, out_dim, dtype=dtype, device=device | ||
) | ||
self.linear_2 = nn.Linear(out_dim, out_dim, dtype=dtype, device=device) | ||
|
||
def forward(self, control_type, dtype, device): | ||
c_type = torch.zeros((self.num_control_type,), device=device) | ||
c_type[control_type] = 1.0 | ||
c_type = ( | ||
timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False) | ||
.to(dtype) | ||
.reshape((-1, self.num_control_type * self.in_dim)) | ||
) | ||
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type))) | ||
|
||
|
||
class OptimizedAttention(nn.Module): | ||
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): | ||
super().__init__() | ||
self.heads = nhead | ||
self.c = c | ||
|
||
self.in_proj = nn.Linear(c, c * 3, bias=True, dtype=dtype, device=device) | ||
self.out_proj = nn.Linear(c, c, bias=True, dtype=dtype, device=device) | ||
|
||
def forward(self, x): | ||
x = self.in_proj(x) | ||
q, k, v = x.split(self.c, dim=2) | ||
out = attention_pytorch(q, k, v, self.heads) | ||
return self.out_proj(out) | ||
|
||
|
||
class QuickGELU(nn.Module): | ||
def forward(self, x: torch.Tensor): | ||
return x * torch.sigmoid(1.702 * x) | ||
|
||
|
||
class ResBlockUnionControlnet(nn.Module): | ||
def __init__(self, dim, nhead, dtype=None, device=None, operations=None): | ||
super().__init__() | ||
self.attn = OptimizedAttention( | ||
dim, nhead, dtype=dtype, device=device, operations=operations | ||
) | ||
self.ln_1 = nn.LayerNorm(dim, dtype=dtype, device=device) | ||
self.mlp = nn.Sequential( | ||
OrderedDict( | ||
[ | ||
( | ||
"c_fc", | ||
nn.Linear(dim, dim * 4, dtype=dtype, device=device), | ||
), | ||
("gelu", QuickGELU()), | ||
( | ||
"c_proj", | ||
nn.Linear(dim * 4, dim, dtype=dtype, device=device), | ||
), | ||
] | ||
) | ||
) | ||
self.ln_2 = nn.LayerNorm(dim, dtype=dtype, device=device) | ||
|
||
def attention(self, x: torch.Tensor): | ||
return self.attn(x) | ||
|
||
def forward(self, x: torch.Tensor): | ||
x = x + self.attention(self.ln_1(x)) | ||
x = x + self.mlp(self.ln_2(x)) | ||
return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.