-
Notifications
You must be signed in to change notification settings - Fork 2k
/
movie2movie.py
176 lines (142 loc) · 6.56 KB
/
movie2movie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import copy
import os
import shutil
import cv2
import gradio as gr
import modules.scripts as scripts
from modules import images
from modules.processing import process_images
from modules.shared import opts
from PIL import Image
import numpy as np
_BASEDIR = "/controlnet-m2m"
_BASEFILE = "animation"
def get_all_frames(video_path):
if video_path is None:
return None
cap = cv2.VideoCapture(video_path)
frame_list = []
if not cap.isOpened():
return
while True:
ret, frame = cap.read()
if ret:
frame_list.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
else:
return frame_list
def get_min_frame_num(video_list):
min_frame_num = -1
for video in video_list:
if video is None:
continue
else:
frame_num = len(video)
print(frame_num)
if min_frame_num < 0:
min_frame_num = frame_num
elif frame_num < min_frame_num:
min_frame_num = frame_num
return min_frame_num
def pil2cv(image):
new_image = np.array(image, dtype=np.uint8)
if new_image.ndim == 2:
pass
elif new_image.shape[2] == 3:
new_image = new_image[:, :, ::-1]
elif new_image.shape[2] == 4:
new_image = new_image[:, :, [2, 1, 0, 3]]
return new_image
def save_gif(path, image_list, name, duration):
tmp_dir = path + "/tmp/"
if os.path.isdir(tmp_dir):
shutil.rmtree(tmp_dir)
os.mkdir(tmp_dir)
for i, image in enumerate(image_list):
images.save_image(image, tmp_dir, f"output_{i}")
os.makedirs(f"{path}{_BASEDIR}", exist_ok=True)
image_list[0].save(f"{path}{_BASEDIR}/{name}.gif", save_all=True, append_images=image_list[1:], optimize=False, duration=duration, loop=0)
class Script(scripts.Script):
def title(self):
return "controlnet m2m"
def show(self, is_img2img):
return True
def ui(self, is_img2img):
# How the script's is displayed in the UI. See https://gradio.app/docs/#components
# for the different UI components you can use and how to create them.
# Most UI components can return a value, such as a boolean for a checkbox.
# The returned values are passed to the run method as parameters.
ctrls_group = ()
max_models = opts.data.get("control_net_unit_count", 3)
with gr.Group():
with gr.Accordion("ControlNet-M2M", open = False):
duration = gr.Slider(label=f"Duration", value=50.0, minimum=10.0, maximum=200.0, step=10, interactive=True, elem_id='controlnet_movie2movie_duration_slider')
with gr.Tabs():
for i in range(max_models):
with gr.Tab(f"ControlNet-{i}"):
with gr.TabItem("Movie Input"):
ctrls_group += (gr.Video(format='mp4', source='upload', elem_id = f"video_{i}"), )
with gr.TabItem("Image Input"):
ctrls_group += (gr.Image(source='upload', brush_radius=20, mirror_webcam=False, type='numpy', tool='sketch', elem_id=f'image_{i}'), )
ctrls_group += (gr.Checkbox(label=f"Save preprocessed", value=False, elem_id = f"save_pre_{i}"),)
ctrls_group += (duration,)
return ctrls_group
def run(self, p, *args):
# This is where the additional processing is implemented. The parameters include
# self, the model object "p" (a StableDiffusionProcessing class, see
# processing.py), and the parameters returned by the ui method.
# Custom functions can be defined here, and additional libraries can be imported
# to be used in processing. The return value should be a Processed object, which is
# what is returned by the process_images method.
contents_num = opts.data.get("control_net_unit_count", 3)
arg_num = 3
item_list = []
video_list = []
for input_set in [tuple(args[:contents_num * arg_num][i:i+3]) for i in range(0, len(args[:contents_num * arg_num]), arg_num)]:
if input_set[0] is not None:
item_list.append([get_all_frames(input_set[0]), "video"])
video_list.append(get_all_frames(input_set[0]))
if input_set[1] is not None:
item_list.append([cv2.cvtColor(pil2cv(input_set[1]["image"]), cv2.COLOR_BGRA2RGB), "image"])
save_pre = list(args[2:contents_num * arg_num:3])
item_num = len(item_list)
video_num = len(video_list)
duration, = args[contents_num * arg_num:]
frame_num = get_min_frame_num(video_list)
if frame_num > 0:
output_image_list = []
pre_output_image_list = []
for i in range(item_num):
pre_output_image_list.append([])
for frame in range(frame_num):
copy_p = copy.copy(p)
copy_p.control_net_input_image = []
for item in item_list:
if item[1] == "video":
copy_p.control_net_input_image.append(item[0][frame])
elif item[1] == "image":
copy_p.control_net_input_image.append(item[0])
else:
continue
proc = process_images(copy_p)
img = proc.images[0]
output_image_list.append(img)
for i in range(len(save_pre)):
if save_pre[i]:
try:
pre_output_image_list[i].append(proc.images[i + 1])
except:
print(f"proc.images[{i} failed")
copy_p.close()
# filename format is seq-seed-animation.gif seq is 5 places left filled with 0
seq = images.get_next_sequence_number(f"{p.outpath_samples}{_BASEDIR}", "")
filename = f"{seq:05}-{proc.seed}-{_BASEFILE}"
save_gif(p.outpath_samples, output_image_list, filename, duration)
proc.images = [f"{p.outpath_samples}{_BASEDIR}/{filename}.gif"]
for i in range(len(save_pre)):
if save_pre[i]:
# control files add -controlX.gif where X is the controlnet number
save_gif(p.outpath_samples, pre_output_image_list[i], f"{filename}-control{i}", duration)
proc.images.append(f"{p.outpath_samples}{_BASEDIR}/{filename}-control{i}.gif")
else:
proc = process_images(p)
return proc