Skip to content

Latest commit

 

History

History

instance_seg

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Instructions for LVIS Dataset

Prepare Dataset

Please put the dataset and annotation into the cvpods project as following:

.
└── datasets
    ├── coco 
    │     ├── annotations
    │     ├── train2017
    │     └── val2017
    ├── lvis
    │     ├── lvis_v0.5_train.json
    │     ├── lvis_v0.5_val.json
    │     ├── num_shots_v0.5.npy
    │     ├── lvis_v1_train.json
    │     ├── lvis_v1_val.json
    │     └── num_shots_v1.0.json
    └── .....

Related files can be downloaded:

Training and Inference

  • Enter one project folder
  • Traning with:
pods_train --num-gpus 8
  • Inference with:
pods_test --num-gpus 8

Model Zoo

(* denotes the cosine classifier)

LVIS V0.5(Mask R-CNN)

We refactor the code of the internal version and re-train all experiments, the performance results have a little difference(higher) with the reported in the original paper.

ResNet-50

Name Cls Norm input size lr sched train time (s/iter) train mem (GB) box AP mask AP Trained Model
MaskRCNN-R50-FPN 640-800 90k 0.486 5.26 20.4 20.7 LINK
MaskRCNN-R50-FPN Cosine 640-800 90k 0.500 5.26 23.0 23.8 LINK
MaskRCNN-R50-FPN-RFS 640-800 90k 0.485 5.25 23.5 24.2 LINK
MaskRCNN-R50-FPN-RFS Cosine 640-800 90k 0.485 5.25 24.5 24.9 LINK
MaskRCNN-R50-FPN-DisAlign 640-800 90k 0.486 5.26 23.7 24.3 LINK
MaskRCNN-R50-FPN-DisAlign Cosine 640-800 90k 0.500 5.26 26.3 27.1 LINK
MaskRCNN-R50-FPN-RFS-DisAlign Cosine 640-800 90k 0.500 5.26 27.1 27.5 LINK

ResNet-101

Name Cls Norm input size lr sched train time (s/iter) train mem (GB) box AP mask AP Trained Model
MaskRCNN-R101-FPN 640-800 90k 22.6 22.8 LINK
MaskRCNN-R101-FPN Cosine 640-800 90k 24.8 25.3 LINK
MaskRCNN-R101-FPN-RFS Cosine 640-800 90k 26.6 26.8 LINK
MaskRCNN-R101-FPN-DisAlign 640-800 90k 25.9 26.2 LINK
MaskRCNN-R101-FPN-DisAlign Cosine 640-800 90k 27.6 28.1 LINK
MaskRCNN-R101-FPN-RFS-DisAlign Cosine 640-800 90k 28.7 28.9 LINK

ResNeXt-101

Name Cls Norm input size lr sched train time (s/iter) train mem (GB) box AP mask AP Trained Model
MaskRCNN-X101-FPN 640-800 90k 24.8 25.2 LINK
MaskRCNN-X101-FPN Cosine 640-800 90k 27.4 28.4 LINK
MaskRCNN-X101-FPN-DisAlign 640-800 90k 26.9 27.3 LINK
MaskRCNN-X101-FPN-DisAlign Cosine 640-800 90k 29.6 30.2 LINK

Cascade R-CNN

LVIS 1.0(Mask R-CNN)

ResNet-50

Name Cls Norm input size lr sched train time (s/iter) train mem (GB) box AP mask AP Trained Model
MaskRCNN-R50-FPN 640-800 180k 0.486 5.26 18.8 18.3 LINK
MaskRCNN-R50-FPN Cosine 640-800 180k 0.500 5.26 21.3 21.1 LINK
MaskRCNN-R50-FPN-RFS 640-800 180k 0.485 5.25 22.9 22.5 LINK
MaskRCNN-R50-FPN-RFS(A1) 640-800 180k 22.3
MaskRCNN-R50-FPN-DisAlign 640-800 180k 0.486 5.26 21.9 21.3 LINK
MaskRCNN-R50-FPN-DisAlign Cosine 640-800 180k 0.500 5.26 24.8 24.2 LINK

ResNet-101

ResNeXt-101

  • A1: Evaluating Large-Vocabulary Object Detectors: The Devil is in the Details