Skip to content

Latest commit

 

History

History

s0

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

conformer based end-to-end model for VKW challenge

Standard E2E Results

Conformer without speed perpurb and lm

  • config: conf/train_train_vkw_bidirect_12conformer_hs2048_output256_att4_conv2d_char.yaml
  • beam: 10
  • num of gpu: 8
  • num of averaged model: 5
  • ctc weight (used for attention rescoring): 0.5

dev set results trained only with training set (785 keywords, 1505 hour train set)

scenario Precision Recall F1 ATWV
lgv 0.9281 0.6420 0.7590 0.5183
liv 0.8886 0.6515 0.7518 0.6050
stv 0.9120 0.7471 0.8213 0.6256

dev set results trained with training set and finetune set (785 keywords, 1505 hour train set + 15 hour finetune set)

scenario Precision Recall F1 ATWV
lgv 0.9478 0.7311 0.8255 0.6352
liv 0.9177 0.8398 0.8770 0.7412
stv 0.9320 0.8207 0.8729 0.7120

test set results trained only with training set (384 keywords, 1505 hour train set)

scenario Precision Recall F1 ATWV
lgv 0.6262 0.5648 0.5939 0.5825
liv 0.8797 0.6282 0.7330 0.6061
stv 0.9102 0.7221 0.8053 0.6682

test set results trained with training set and finetune set (384 keywords, 1505 hour train set + 15 hour finetune set)

scenario Precision Recall F1 ATWV
lgv 0.6469 0.6276 0.6371 0.6116
liv 0.9278 0.7560 0.8331 0.6927
stv 0.9434 0.8061 0.8693 0.7275