Skip to content

Commit

Permalink
add low latency vocos
Browse files Browse the repository at this point in the history
  • Loading branch information
Mddct committed Sep 4, 2024
1 parent 7d285e7 commit eb3f310
Show file tree
Hide file tree
Showing 3 changed files with 934 additions and 0 deletions.
254 changes: 254 additions & 0 deletions wenet/codec/vocos_low_latency/discriminators.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
from typing import List, Optional, Tuple

import torch
from torch import nn
from torch.nn import Conv2d
from torch.nn.utils import weight_norm
from torchaudio.transforms import Spectrogram


class MultiPeriodDiscriminator(nn.Module):
"""
Multi-Period Discriminator module adapted from https://github.com/jik876/hifi-gan.
Additionally, it allows incorporating conditional information with a learned embeddings table.
Args:
periods (tuple[int]): Tuple of periods for each discriminator.
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
Defaults to None.
"""

def __init__(self,
periods: Tuple[int, ...] = (2, 3, 5, 7, 11),
num_embeddings: Optional[int] = None):
super().__init__()
self.discriminators = nn.ModuleList([
DiscriminatorP(period=p, num_embeddings=num_embeddings)
for p in periods
])

def forward(
self,
y: torch.Tensor,
y_hat: torch.Tensor,
bandwidth_id: Optional[torch.Tensor] = None
) -> Tuple[List[torch.Tensor], List[torch.Tensor],
List[List[torch.Tensor]], List[List[torch.Tensor]]]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for d in self.discriminators:
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)

return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class DiscriminatorP(nn.Module):

def __init__(
self,
period: int,
in_channels: int = 1,
kernel_size: int = 5,
stride: int = 3,
lrelu_slope: float = 0.1,
num_embeddings: Optional[int] = None,
):
super().__init__()
self.period = period
self.convs = nn.ModuleList([
weight_norm(
Conv2d(in_channels,
32, (kernel_size, 1), (stride, 1),
padding=(kernel_size // 2, 0))),
weight_norm(
Conv2d(32,
128, (kernel_size, 1), (stride, 1),
padding=(kernel_size // 2, 0))),
weight_norm(
Conv2d(128,
512, (kernel_size, 1), (stride, 1),
padding=(kernel_size // 2, 0))),
weight_norm(
Conv2d(512,
1024, (kernel_size, 1), (stride, 1),
padding=(kernel_size // 2, 0))),
weight_norm(
Conv2d(1024,
1024, (kernel_size, 1), (1, 1),
padding=(kernel_size // 2, 0))),
])
if num_embeddings is not None:
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings,
embedding_dim=1024)
torch.nn.init.zeros_(self.emb.weight)

self.conv_post = weight_norm(Conv2d(1024, 1, (3, 1), 1,
padding=(1, 0)))
self.lrelu_slope = lrelu_slope

def forward(
self,
x: torch.Tensor,
cond_embedding_id: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
x = x.unsqueeze(1)
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = torch.nn.functional.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)

for i, l in enumerate(self.convs):
x = l(x)
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope)
if i > 0:
fmap.append(x)
if cond_embedding_id is not None:
emb = self.emb(cond_embedding_id)
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
else:
h = 0
x = self.conv_post(x)
fmap.append(x)
x += h
x = torch.flatten(x, 1, -1)

return x, fmap


class MultiResolutionDiscriminator(nn.Module):

def __init__(
self,
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
num_embeddings: Optional[int] = None,
):
"""
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
Additionally, it allows incorporating conditional information with a learned embeddings table.
Args:
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
Defaults to None.
"""

super().__init__()
self.discriminators = nn.ModuleList([
DiscriminatorR(window_length=w, num_embeddings=num_embeddings)
for w in fft_sizes
])

def forward(
self,
y: torch.Tensor,
y_hat: torch.Tensor,
bandwidth_id: torch.Tensor = None
) -> Tuple[List[torch.Tensor], List[torch.Tensor],
List[List[torch.Tensor]], List[List[torch.Tensor]]]:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []

for d in self.discriminators:
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)

return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class DiscriminatorR(nn.Module):

def __init__(
self,
window_length: int,
num_embeddings: Optional[int] = None,
channels: int = 32,
hop_factor: float = 0.25,
bands: Tuple[Tuple[float, float],
...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75),
(0.75, 1.0)),
):
super().__init__()
self.window_length = window_length
self.hop_factor = hop_factor
self.spec_fn = Spectrogram(n_fft=window_length,
hop_length=int(window_length * hop_factor),
win_length=window_length,
power=None)
n_fft = window_length // 2 + 1
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
self.bands = bands
convs = lambda: nn.ModuleList([
weight_norm(nn.Conv2d(2, channels, (3, 9),
(1, 1), padding=(1, 4))),
weight_norm(
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
weight_norm(
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
weight_norm(
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
weight_norm(
nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
])
self.band_convs = nn.ModuleList(
[convs() for _ in range(len(self.bands))])

if num_embeddings is not None:
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings,
embedding_dim=channels)
torch.nn.init.zeros_(self.emb.weight)

self.conv_post = weight_norm(
nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))

def spectrogram(self, x):
# Remove DC offset
x = x - x.mean(dim=-1, keepdims=True)
# Peak normalize the volume of input audio
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
x = self.spec_fn(x)
x = torch.view_as_real(x)
# x = rearrange(x, "b f t c -> b c t f")
x = x.transpose(1, 3)
# Split into bands
x_bands = [x[..., b[0]:b[1]] for b in self.bands]
return x_bands

def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
x_bands = self.spectrogram(x)
fmap = []
x = []
for band, stack in zip(x_bands, self.band_convs):
for i, layer in enumerate(stack):
band = layer(band)
band = torch.nn.functional.leaky_relu(band, 0.1)
if i > 0:
fmap.append(band)
x.append(band)
x = torch.cat(x, dim=-1)
if cond_embedding_id is not None:
emb = self.emb(cond_embedding_id)
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
else:
h = 0
x = self.conv_post(x)
fmap.append(x)
x += h

return x, fmap
Loading

0 comments on commit eb3f310

Please sign in to comment.