-
Notifications
You must be signed in to change notification settings - Fork 22
/
parse_json.py
145 lines (120 loc) · 4.9 KB
/
parse_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import json
import numpy as np
import random
import os
import argparse
from utils import *
def RL_choose_by_prob(data, node=4):
val_acc = data['val_acc']
print(val_acc)
samples = data['sample']
optim_prob = data['optim_prob']
# remove the invalid value
val_acc[0] = 0
best_val_acc = max(val_acc)
index = val_acc.index(best_val_acc)
prob = np.max(np.array(optim_prob[index]), axis=1).reshape(2, -1)
sample = np.array(samples[index]).reshape(2, -1)
mask = []
for i in range(node):
for j in range(i+2):
mask.append(i)
mask = np.array(mask)
new_sample = np.zeros_like(prob) + 7
for i, c in enumerate(['normal', 'reduce']):
prob_c = prob[i, :]
for j in range(node):
prob_c_masked = np.int8(mask == j) * prob_c
for keep in range(2):
ind = np.argmax(prob_c_masked)
new_sample[i][ind] = sample[i][ind]
prob_c_masked[ind] = 0
new_sample = np.int8(new_sample).reshape(1, -1).tolist()[0]
new_geno = convert_sample_to_genotype(new_sample)
print('# index: {}'.format(index))
print('# sample: {}'.format(samples[index]))
print('# best genotype: {}'.format(data['best_genotype']))
print('# new sample: {}'.format(new_sample))
print('# new genotype:')
print(new_geno)
return new_geno
def Evolution_choose_randomly(data, node=4, number=10):
val_acc = data['val_acc']
samples = data['sample']
best_val_acc = max(val_acc)
index = val_acc.index(best_val_acc) # index of net with heightest acc
sample = np.array(samples[index]) # best sample
def get_mask_for_cell(node):
mask = []
for i in range(node):
mask_n = [1 for n in range(i + 2)] # for each node
index_list = list(range(i + 2)) # index of mask_n
for j in range(i):
ind = random.sample(index_list, 1)[0]
mask_n[ind] = 0 # remove this edge
index_list.remove(ind) # remove the one has been choosen
mask.extend(mask_n)
return mask
new_genotypes = []
print('# index: {}'.format(index))
print('# sample: {}'.format(sample.tolist()))
print('# best acc: {}'.format(best_val_acc))
print('# best genotype: {}'.format(data['best_genotype']))
for num in range(number):
mask = get_mask_for_cell(node)
mask.extend(get_mask_for_cell(node))
inverse_mask = np.int8([0 if m == 1 else 1 for m in mask]) * 7
mask = np.int8(mask)
new_sample = sample * mask + inverse_mask
new_geno = convert_sample_to_genotype(new_sample.tolist())
new_genotypes.append(new_geno)
print('# sample: {}'.format(sample.tolist()))
print('# keep mask: {}'.format(mask.tolist()))
print('# new_sample: {}'.format(new_sample.tolist()))
print('# new genotype:')
print(new_geno)
return new_genotypes
def plt_reward_of_RL(logger):
reward = []
if not os.access(logger, os.R_OK):
raise ValueError('%s not exists' % logger)
with open(logger, 'r') as f:
data = f.readlines()
for line in data:
if 'baseline reward' in line:
reward.append(float(line.strip()[-7:-1]))
if len(reward) == 0:
raise ValueError('key word not found')
step = list(range(len(reward)))
try:
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
plt.plot(step, reward)
s = os.path.basename(logger).split('.')[0].split('_')
saveto = 'experiment/RL/reward_{}_{}.png'.format(s[1], s[2])
plt.savefig(saveto, format='png', dip=300)
except:
raise ValueError('can not plot figs')
return reward
if __name__ == "__main__":
parser = argparse.ArgumentParser('ParseJson')
parser.add_argument('--method', default='RL', type=str, choices=['RL', 'EA'], required=True)
parser.add_argument('--param', choices=['BPE1', 'BPE2'], type=str, required=True)
parser.add_argument('--run_id', default=0, type=int, required=True)
parser.add_argument('--saveto', default='experiment/EA/sampling.txt', type=str)
args = parser.parse_args()
if args.method == 'RL':
path = 'experiment/RL/run_{}_{}.json'.format(args.param, args.run_id)
data = json.load(open(path, 'r'))
best_geno_rl = RL_choose_by_prob(data)
rewards = plt_reward_of_RL(path.replace('.json', '.log').replace('run', 'RL'))
elif args.method == 'EA':
path = 'experiment/EA/run_{}_{}.json'.format(args.param, args.run_id)
data = json.load(open(path, 'r'))
random_geno_evo = Evolution_choose_randomly(data, number=10)
with open(args.saveto, 'w') as f:
for geno in random_geno_evo:
f.write(geno+'\n')
else:
raise ValueError('Error method')