This is the official source code for our AAAI 2024 Paper "An Attentive Inductive Bias for Sequential Recommendation beyond the Self-Attention"
Beyond Self-Attention for Sequential Recommendation (BSARec) leverages Fourier transform to strike a balance between our inductive bias and self-attention.
In our experiments, we utilize six datasets, all stored in the src/data
folder.
- For the Beauty, Sports, Toys, and Yelp datasets, we employed the datasets downloaded from this repository.
- For ML-1M and LastFM, we processed the data according to the procedure outlined in this code.
- The
src/data/*_same_target.npy
files are utilized for training DuoRec and FEARec, both of which incorporate contrastive learning.
conda env create -f bsarec_env.yaml
conda activate bsarec
- Note that pretrained model (.pt) and train log file (.log) will saved in
BSARec/output
train_name
: name for log file and checkpoint file
python main.py --data_name [DATASET] \
--lr [LEARNING_RATE] \
--alpha [ALPHA] \
--c [C] \
--num_attention_heads [N_HEADS] \
--train_name [LOG_NAME]
- Example for Beauty
python main.py --data_name Beauty \
--lr 0.0005 \
--alpha 0.7 \
--c 5 \
--num_attention_heads 1 \
--train_name BSARec_Beauty
- Note that pretrained model (.pt file) must be in
BSARec/output
load_model
: pretrained model name without .pt
python main.py --data_name [DATASET] \
--alpha [ALPHA] \
--c [C] \
--num_attention_heads [N_HEADS] \
--load_model [PRETRAINED_MODEL_NAME] \
--do_eval
- Example for Beauty
python main.py --data_name Beauty \
--alpha 0.7 \
--c 5 \
--num_attention_heads 1 \
--load_model BSARec_Beauty_best \
--do_eval
- You can easily train the baseline models used in BSARec by changing the
model_type
argument.model_type
: Caser, GRU4Rec, SASRec, BERT4Rec, FMLPRec, DuoRec, FEARec
- For the hyperparameters for the baselines, check the
parse_args()
function insrc/utils.py
.
python main.py --model_type SASRec \
--data_name Beauty \
--num_attention_heads 1 \
--train_name SASRec_Beauty
If you have any inquiries regarding our paper or codes, feel free to reach out via email at yehjin.shin@yonsei.ac.kr.
This repository is based on FMLP-Rec.