Skip to content

Commit

Permalink
add inception-v3 model
Browse files Browse the repository at this point in the history
  • Loading branch information
ebenolson committed Feb 5, 2016
1 parent 115a3dd commit 5316082
Showing 1 changed file with 192 additions and 0 deletions.
192 changes: 192 additions & 0 deletions modelzoo/inception_v3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# Inception-v3, model from the paper:
# "Rethinking the Inception Architecture for Computer Vision"
# http://arxiv.org/abs/1512.00567
# Original source:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/image/imagenet/classify_image.py
# License: http://www.apache.org/licenses/LICENSE-2.0

# Download pretrained weights from:
# https://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/inception_v3.pkl


from lasagne.layers import InputLayer
from lasagne.layers import Conv2DLayer
from lasagne.layers import Pool2DLayer
from lasagne.layers import DenseLayer
from lasagne.layers import GlobalPoolLayer
from lasagne.layers import ConcatLayer
from lasagne.layers.normalization import batch_norm
from lasagne.nonlinearities import softmax


def preprocess(im):
# Expected input: RGB uint8 image
# Input to network should be bc01, 299x299 pixels, scaled to [-1, 1].
import skimage.transform
import numpy as np

im = skimage.transform.resize(im, (299, 299), preserve_range=True)
im = (im - 128) / 128.
im = np.rollaxis(im, 2)[np.newaxis].astype('float32')

return im


def bn_conv(input_layer, **kwargs):
l = Conv2DLayer(input_layer, **kwargs)
l = batch_norm(l, epsilon=0.001)
return l


def inceptionA(input_layer, nfilt):
# Corresponds to a modified version of figure 5 in the paper
l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=1)

l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1)
l2 = bn_conv(l2, num_filters=nfilt[1][1], filter_size=5, pad=2)

l3 = bn_conv(input_layer, num_filters=nfilt[2][0], filter_size=1)
l3 = bn_conv(l3, num_filters=nfilt[2][1], filter_size=3, pad=1)
l3 = bn_conv(l3, num_filters=nfilt[2][2], filter_size=3, pad=1)

l4 = Pool2DLayer(
input_layer, pool_size=3, stride=1, pad=1, mode='average_exc_pad')
l4 = bn_conv(l4, num_filters=nfilt[3][0], filter_size=1)

return ConcatLayer([l1, l2, l3, l4])


def inceptionB(input_layer, nfilt):
# Corresponds to a modified version of figure 10 in the paper
l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=3, stride=2)

l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1)
l2 = bn_conv(l2, num_filters=nfilt[1][1], filter_size=3, pad=1)
l2 = bn_conv(l2, num_filters=nfilt[1][2], filter_size=3, stride=2)

l3 = Pool2DLayer(input_layer, pool_size=3, stride=2)

return ConcatLayer([l1, l2, l3])


def inceptionC(input_layer, nfilt):
# Corresponds to figure 6 in the paper
l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=1)

l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1)
l2 = bn_conv(l2, num_filters=nfilt[1][1], filter_size=(1, 7), pad=(0, 3))
l2 = bn_conv(l2, num_filters=nfilt[1][2], filter_size=(7, 1), pad=(3, 0))

l3 = bn_conv(input_layer, num_filters=nfilt[2][0], filter_size=1)
l3 = bn_conv(l3, num_filters=nfilt[2][1], filter_size=(7, 1), pad=(3, 0))
l3 = bn_conv(l3, num_filters=nfilt[2][2], filter_size=(1, 7), pad=(0, 3))
l3 = bn_conv(l3, num_filters=nfilt[2][3], filter_size=(7, 1), pad=(3, 0))
l3 = bn_conv(l3, num_filters=nfilt[2][4], filter_size=(1, 7), pad=(0, 3))

l4 = Pool2DLayer(
input_layer, pool_size=3, stride=1, pad=1, mode='average_exc_pad')
l4 = bn_conv(l4, num_filters=nfilt[3][0], filter_size=1)

return ConcatLayer([l1, l2, l3, l4])


def inceptionD(input_layer, nfilt):
# Corresponds to a modified version of figure 10 in the paper
l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=1)
l1 = bn_conv(l1, num_filters=nfilt[0][1], filter_size=3, stride=2)

l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1)
l2 = bn_conv(l2, num_filters=nfilt[1][1], filter_size=(1, 7), pad=(0, 3))
l2 = bn_conv(l2, num_filters=nfilt[1][2], filter_size=(7, 1), pad=(3, 0))
l2 = bn_conv(l2, num_filters=nfilt[1][3], filter_size=3, stride=2)

l3 = Pool2DLayer(input_layer, pool_size=3, stride=2)

return ConcatLayer([l1, l2, l3])


def inceptionE(input_layer, nfilt, pool_mode):
# Corresponds to figure 7 in the paper
l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=1)

l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1)
l2a = bn_conv(l2, num_filters=nfilt[1][1], filter_size=(1, 3), pad=(0, 1))
l2b = bn_conv(l2, num_filters=nfilt[1][2], filter_size=(3, 1), pad=(1, 0))

l3 = bn_conv(input_layer, num_filters=nfilt[2][0], filter_size=1)
l3 = bn_conv(l3, num_filters=nfilt[2][1], filter_size=3, pad=1)
l3a = bn_conv(l3, num_filters=nfilt[2][2], filter_size=(1, 3), pad=(0, 1))
l3b = bn_conv(l3, num_filters=nfilt[2][3], filter_size=(3, 1), pad=(1, 0))

l4 = Pool2DLayer(
input_layer, pool_size=3, stride=1, pad=1, mode=pool_mode)

l4 = bn_conv(l4, num_filters=nfilt[3][0], filter_size=1)

return ConcatLayer([l1, l2a, l2b, l3a, l3b, l4])


def build_network():
net = {}

net['input'] = InputLayer((None, 3, 299, 299))
net['conv'] = bn_conv(net['input'],
num_filters=32, filter_size=3, stride=2)
net['conv_1'] = bn_conv(net['conv'], num_filters=32, filter_size=3)
net['conv_2'] = bn_conv(net['conv_1'],
num_filters=64, filter_size=3, pad=1)
net['pool'] = Pool2DLayer(net['conv_2'], pool_size=3, stride=2, mode='max')

net['conv_3'] = bn_conv(net['pool'], num_filters=80, filter_size=1)

net['conv_4'] = bn_conv(net['conv_3'], num_filters=192, filter_size=3)

net['pool_1'] = Pool2DLayer(net['conv_4'],
pool_size=3, stride=2, mode='max')
net['mixed/join'] = inceptionA(
net['pool_1'], nfilt=((64,), (48, 64), (64, 96, 96), (32,)))
net['mixed_1/join'] = inceptionA(
net['mixed/join'], nfilt=((64,), (48, 64), (64, 96, 96), (64,)))

net['mixed_2/join'] = inceptionA(
net['mixed_1/join'], nfilt=((64,), (48, 64), (64, 96, 96), (64,)))

net['mixed_3/join'] = inceptionB(
net['mixed_2/join'], nfilt=((384,), (64, 96, 96)))

net['mixed_4/join'] = inceptionC(
net['mixed_3/join'],
nfilt=((192,), (128, 128, 192), (128, 128, 128, 128, 192), (192,)))

net['mixed_5/join'] = inceptionC(
net['mixed_4/join'],
nfilt=((192,), (160, 160, 192), (160, 160, 160, 160, 192), (192,)))

net['mixed_6/join'] = inceptionC(
net['mixed_5/join'],
nfilt=((192,), (160, 160, 192), (160, 160, 160, 160, 192), (192,)))

net['mixed_7/join'] = inceptionC(
net['mixed_6/join'],
nfilt=((192,), (192, 192, 192), (192, 192, 192, 192, 192), (192,)))

net['mixed_8/join'] = inceptionD(
net['mixed_7/join'],
nfilt=((192, 320), (192, 192, 192, 192)))

net['mixed_9/join'] = inceptionE(
net['mixed_8/join'],
nfilt=((320,), (384, 384, 384), (448, 384, 384, 384), (192,)),
pool_mode='average_exc_pad')

net['mixed_10/join'] = inceptionE(
net['mixed_9/join'],
nfilt=((320,), (384, 384, 384), (448, 384, 384, 384), (192,)),
pool_mode='max')

net['pool3'] = GlobalPoolLayer(net['mixed_10/join'])

net['softmax'] = DenseLayer(
net['pool3'], num_units=1008, nonlinearity=softmax)

return net

0 comments on commit 5316082

Please sign in to comment.