You may see the report if you follow this link
Firstly, install needed requirements for running model
pip install -r ./requirements.txt
Use bash script to download trained model
cd ./default_test_model
./download.sh
It will be placed to ./default_test_model/checkpoint.pth
If you have some issues using bash utilities, you may download model directly from google drive
You may check this model on your data. Put your audio to test folder test_data/audio
.
python test.py \
-r default_test_model/checkpoint.pth \
-t test_data \
-o test_result.json
Or you can check EER and predictions on ASVDataset. Then provide config link to arguments
python test.py \
-r default_test_model/checkpoint.pth \
-c default_test_config.json \
-o test_result.json
This repository is based on a heavily modified fork of pytorch-template repository.
You can use this project with docker. Quick start:
docker build -t my_src_image .
docker run \
--gpus '"device=0"' \
-it --rm \
-v /path/to/local/storage/dir:/repos/asr_project_template/data/datasets \
-e WANDB_API_KEY=<your_wandb_api_key> \
my_src_image python -m unittest
Notes:
-v /out/of/container/path:/inside/container/path
-- bind mount a path, so you wouldn't have to download datasets at the start of every docker run.-e WANDB_API_KEY=<your_wandb_api_key>
-- set envvar for wandb (if you want to use it). You can find your API key here: https://wandb.ai/authorize