You may see the report if you follow this link
Firstly, install needed requirements for running model
pip install -r ./requirements.txt
Use bash script to download trained model
cd ./default_test_model
./download.sh
It will be placed to ./default_test_model/checkpoint.pth
If you have some issues using bash utilities, you may download model directly from google drive
python test.py \
-c default_test_model/config.json \
-r default_test_model/checkpoint.pth \
-t test_data \
-o test_result.json
This repository is based on a heavily modified fork of pytorch-template repository.
You can use this project with docker. Quick start:
docker build -t my_src_image .
docker run \
--gpus '"device=0"' \
-it --rm \
-v /path/to/local/storage/dir:/repos/asr_project_template/data/datasets \
-e WANDB_API_KEY=<your_wandb_api_key> \
my_src_image python -m unittest
Notes:
-v /out/of/container/path:/inside/container/path
-- bind mount a path, so you wouldn't have to download datasets at the start of every docker run.-e WANDB_API_KEY=<your_wandb_api_key>
-- set envvar for wandb (if you want to use it). You can find your API key here: https://wandb.ai/authorize