-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuroNet.py
105 lines (91 loc) · 4.04 KB
/
NeuroNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
import random
import openpyxl as xl
class OurNeuralNetwork(object):
def sigmoid(self, z):
return 1.0 / (1.0 + np.exp(-z))
def derivative_sigmoid(self, z):
return self.sigmoid(z) * (1 - self.sigmoid(z))
def __init__(self, sizes):
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self.weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:])]
def SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None, show_tests=False):
if test_data:
n_test = len(test_data)
mx_evol = -1
n = len(training_data)
for j in range(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
evol = self.evaluate(test_data, self.biases, self.weights)
if mx_evol < evol:
mx_biases = self.biases
mx_weights = self.weights
mx_evol = evol
if show_tests: print("Epoch {0}: {1} / {2}".format(j, evol, n_test))
else:
print("Epoch {0} complete".format(j))
if test_data:
print("\nAll Epoches complete \nBest score: {0} / {1}".format(
mx_evol, n_test))
self.biases = mx_biases
self.weights = mx_weights
def update_mini_batch(self, mini_batch, eta):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw
for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]
def backprop(self, x, y):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
activation = x
activations = [x]
zs = []
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b
zs.append(z)
activation = self.sigmoid(z)
activations.append(activation)
delta = self.cost_derivative(activations[-1], y) * \
self.derivative_sigmoid(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, np.transpose(activations[-2]))
for l in range(2, self.num_layers):
z = zs[-l]
sp = self.derivative_sigmoid(z)
delta = np.dot(np.transpose(self.weights[-l+1]), delta) * sp
nabla_b[-l] = delta
#print(delta, "\n\n", np.transpose(activations[-l+1]))
nabla_w[-l] = np.dot(delta, np.transpose(activations[-l+1]))
return (nabla_b, nabla_w)
def evaluate(self, test_data, biases, weights):
test_results = [(np.argmax(self.feedforward(x, biases, weights)), y)
for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)
def feedforward(self, a, biases, weights):
for b, w in zip(biases, weights):
a = self.sigmoid(np.dot(w, a)+b)
return a
def cost_derivative(self, output_activations, y):
return (output_activations-y)
if __name__ == "__main__":
Network = OurNeuralNetwork([12, 7, 1])
wb = xl.load_workbook("./Тестовые данные.xlsx")
data = [([wb["Лист1"].cell(row=i, column=j).value for j in range(2, 14)], wb["Лист1"][f"N{i}"].value)
for i in range(2, 100)]
Network.SGD(data, 1000, 7, 2, data, True)