forked from Dan-in-CA/SIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctools.py
525 lines (403 loc) · 13.2 KB
/
functools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import functools
import time
import inspect
import collections
import types
import itertools
import more_itertools
from typing import Callable, TypeVar
CallableT = TypeVar("CallableT", bound=Callable[..., object])
def compose(*funcs):
"""
Compose any number of unary functions into a single unary function.
>>> import textwrap
>>> expected = str.strip(textwrap.dedent(compose.__doc__))
>>> strip_and_dedent = compose(str.strip, textwrap.dedent)
>>> strip_and_dedent(compose.__doc__) == expected
True
Compose also allows the innermost function to take arbitrary arguments.
>>> round_three = lambda x: round(x, ndigits=3)
>>> f = compose(round_three, int.__truediv__)
>>> [f(3*x, x+1) for x in range(1,10)]
[1.5, 2.0, 2.25, 2.4, 2.5, 2.571, 2.625, 2.667, 2.7]
"""
def compose_two(f1, f2):
return lambda *args, **kwargs: f1(f2(*args, **kwargs))
return functools.reduce(compose_two, funcs)
def method_caller(method_name, *args, **kwargs):
"""
Return a function that will call a named method on the
target object with optional positional and keyword
arguments.
>>> lower = method_caller('lower')
>>> lower('MyString')
'mystring'
"""
def call_method(target):
func = getattr(target, method_name)
return func(*args, **kwargs)
return call_method
def once(func):
"""
Decorate func so it's only ever called the first time.
This decorator can ensure that an expensive or non-idempotent function
will not be expensive on subsequent calls and is idempotent.
>>> add_three = once(lambda a: a+3)
>>> add_three(3)
6
>>> add_three(9)
6
>>> add_three('12')
6
To reset the stored value, simply clear the property ``saved_result``.
>>> del add_three.saved_result
>>> add_three(9)
12
>>> add_three(8)
12
Or invoke 'reset()' on it.
>>> add_three.reset()
>>> add_three(-3)
0
>>> add_three(0)
0
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
if not hasattr(wrapper, 'saved_result'):
wrapper.saved_result = func(*args, **kwargs)
return wrapper.saved_result
wrapper.reset = lambda: vars(wrapper).__delitem__('saved_result')
return wrapper
def method_cache(
method: CallableT,
cache_wrapper: Callable[
[CallableT], CallableT
] = functools.lru_cache(), # type: ignore[assignment]
) -> CallableT:
"""
Wrap lru_cache to support storing the cache data in the object instances.
Abstracts the common paradigm where the method explicitly saves an
underscore-prefixed protected property on first call and returns that
subsequently.
>>> class MyClass:
... calls = 0
...
... @method_cache
... def method(self, value):
... self.calls += 1
... return value
>>> a = MyClass()
>>> a.method(3)
3
>>> for x in range(75):
... res = a.method(x)
>>> a.calls
75
Note that the apparent behavior will be exactly like that of lru_cache
except that the cache is stored on each instance, so values in one
instance will not flush values from another, and when an instance is
deleted, so are the cached values for that instance.
>>> b = MyClass()
>>> for x in range(35):
... res = b.method(x)
>>> b.calls
35
>>> a.method(0)
0
>>> a.calls
75
Note that if method had been decorated with ``functools.lru_cache()``,
a.calls would have been 76 (due to the cached value of 0 having been
flushed by the 'b' instance).
Clear the cache with ``.cache_clear()``
>>> a.method.cache_clear()
Same for a method that hasn't yet been called.
>>> c = MyClass()
>>> c.method.cache_clear()
Another cache wrapper may be supplied:
>>> cache = functools.lru_cache(maxsize=2)
>>> MyClass.method2 = method_cache(lambda self: 3, cache_wrapper=cache)
>>> a = MyClass()
>>> a.method2()
3
Caution - do not subsequently wrap the method with another decorator, such
as ``@property``, which changes the semantics of the function.
See also
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods/
for another implementation and additional justification.
"""
def wrapper(self: object, *args: object, **kwargs: object) -> object:
# it's the first call, replace the method with a cached, bound method
bound_method: CallableT = types.MethodType( # type: ignore[assignment]
method, self
)
cached_method = cache_wrapper(bound_method)
setattr(self, method.__name__, cached_method)
return cached_method(*args, **kwargs)
# Support cache clear even before cache has been created.
wrapper.cache_clear = lambda: None # type: ignore[attr-defined]
return ( # type: ignore[return-value]
_special_method_cache(method, cache_wrapper) or wrapper
)
def _special_method_cache(method, cache_wrapper):
"""
Because Python treats special methods differently, it's not
possible to use instance attributes to implement the cached
methods.
Instead, install the wrapper method under a different name
and return a simple proxy to that wrapper.
https://github.com/jaraco/jaraco.functools/issues/5
"""
name = method.__name__
special_names = '__getattr__', '__getitem__'
if name not in special_names:
return
wrapper_name = '__cached' + name
def proxy(self, *args, **kwargs):
if wrapper_name not in vars(self):
bound = types.MethodType(method, self)
cache = cache_wrapper(bound)
setattr(self, wrapper_name, cache)
else:
cache = getattr(self, wrapper_name)
return cache(*args, **kwargs)
return proxy
def apply(transform):
"""
Decorate a function with a transform function that is
invoked on results returned from the decorated function.
>>> @apply(reversed)
... def get_numbers(start):
... "doc for get_numbers"
... return range(start, start+3)
>>> list(get_numbers(4))
[6, 5, 4]
>>> get_numbers.__doc__
'doc for get_numbers'
"""
def wrap(func):
return functools.wraps(func)(compose(transform, func))
return wrap
def result_invoke(action):
r"""
Decorate a function with an action function that is
invoked on the results returned from the decorated
function (for its side-effect), then return the original
result.
>>> @result_invoke(print)
... def add_two(a, b):
... return a + b
>>> x = add_two(2, 3)
5
>>> x
5
"""
def wrap(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
action(result)
return result
return wrapper
return wrap
def call_aside(f, *args, **kwargs):
"""
Call a function for its side effect after initialization.
>>> @call_aside
... def func(): print("called")
called
>>> func()
called
Use functools.partial to pass parameters to the initial call
>>> @functools.partial(call_aside, name='bingo')
... def func(name): print("called with", name)
called with bingo
"""
f(*args, **kwargs)
return f
class Throttler:
"""
Rate-limit a function (or other callable)
"""
def __init__(self, func, max_rate=float('Inf')):
if isinstance(func, Throttler):
func = func.func
self.func = func
self.max_rate = max_rate
self.reset()
def reset(self):
self.last_called = 0
def __call__(self, *args, **kwargs):
self._wait()
return self.func(*args, **kwargs)
def _wait(self):
"ensure at least 1/max_rate seconds from last call"
elapsed = time.time() - self.last_called
must_wait = 1 / self.max_rate - elapsed
time.sleep(max(0, must_wait))
self.last_called = time.time()
def __get__(self, obj, type=None):
return first_invoke(self._wait, functools.partial(self.func, obj))
def first_invoke(func1, func2):
"""
Return a function that when invoked will invoke func1 without
any parameters (for its side-effect) and then invoke func2
with whatever parameters were passed, returning its result.
"""
def wrapper(*args, **kwargs):
func1()
return func2(*args, **kwargs)
return wrapper
def retry_call(func, cleanup=lambda: None, retries=0, trap=()):
"""
Given a callable func, trap the indicated exceptions
for up to 'retries' times, invoking cleanup on the
exception. On the final attempt, allow any exceptions
to propagate.
"""
attempts = itertools.count() if retries == float('inf') else range(retries)
for attempt in attempts:
try:
return func()
except trap:
cleanup()
return func()
def retry(*r_args, **r_kwargs):
"""
Decorator wrapper for retry_call. Accepts arguments to retry_call
except func and then returns a decorator for the decorated function.
Ex:
>>> @retry(retries=3)
... def my_func(a, b):
... "this is my funk"
... print(a, b)
>>> my_func.__doc__
'this is my funk'
"""
def decorate(func):
@functools.wraps(func)
def wrapper(*f_args, **f_kwargs):
bound = functools.partial(func, *f_args, **f_kwargs)
return retry_call(bound, *r_args, **r_kwargs)
return wrapper
return decorate
def print_yielded(func):
"""
Convert a generator into a function that prints all yielded elements
>>> @print_yielded
... def x():
... yield 3; yield None
>>> x()
3
None
"""
print_all = functools.partial(map, print)
print_results = compose(more_itertools.consume, print_all, func)
return functools.wraps(func)(print_results)
def pass_none(func):
"""
Wrap func so it's not called if its first param is None
>>> print_text = pass_none(print)
>>> print_text('text')
text
>>> print_text(None)
"""
@functools.wraps(func)
def wrapper(param, *args, **kwargs):
if param is not None:
return func(param, *args, **kwargs)
return wrapper
def assign_params(func, namespace):
"""
Assign parameters from namespace where func solicits.
>>> def func(x, y=3):
... print(x, y)
>>> assigned = assign_params(func, dict(x=2, z=4))
>>> assigned()
2 3
The usual errors are raised if a function doesn't receive
its required parameters:
>>> assigned = assign_params(func, dict(y=3, z=4))
>>> assigned()
Traceback (most recent call last):
TypeError: func() ...argument...
It even works on methods:
>>> class Handler:
... def meth(self, arg):
... print(arg)
>>> assign_params(Handler().meth, dict(arg='crystal', foo='clear'))()
crystal
"""
sig = inspect.signature(func)
params = sig.parameters.keys()
call_ns = {k: namespace[k] for k in params if k in namespace}
return functools.partial(func, **call_ns)
def save_method_args(method):
"""
Wrap a method such that when it is called, the args and kwargs are
saved on the method.
>>> class MyClass:
... @save_method_args
... def method(self, a, b):
... print(a, b)
>>> my_ob = MyClass()
>>> my_ob.method(1, 2)
1 2
>>> my_ob._saved_method.args
(1, 2)
>>> my_ob._saved_method.kwargs
{}
>>> my_ob.method(a=3, b='foo')
3 foo
>>> my_ob._saved_method.args
()
>>> my_ob._saved_method.kwargs == dict(a=3, b='foo')
True
The arguments are stored on the instance, allowing for
different instance to save different args.
>>> your_ob = MyClass()
>>> your_ob.method({str('x'): 3}, b=[4])
{'x': 3} [4]
>>> your_ob._saved_method.args
({'x': 3},)
>>> my_ob._saved_method.args
()
"""
args_and_kwargs = collections.namedtuple('args_and_kwargs', 'args kwargs')
@functools.wraps(method)
def wrapper(self, *args, **kwargs):
attr_name = '_saved_' + method.__name__
attr = args_and_kwargs(args, kwargs)
setattr(self, attr_name, attr)
return method(self, *args, **kwargs)
return wrapper
def except_(*exceptions, replace=None, use=None):
"""
Replace the indicated exceptions, if raised, with the indicated
literal replacement or evaluated expression (if present).
>>> safe_int = except_(ValueError)(int)
>>> safe_int('five')
>>> safe_int('5')
5
Specify a literal replacement with ``replace``.
>>> safe_int_r = except_(ValueError, replace=0)(int)
>>> safe_int_r('five')
0
Provide an expression to ``use`` to pass through particular parameters.
>>> safe_int_pt = except_(ValueError, use='args[0]')(int)
>>> safe_int_pt('five')
'five'
"""
def decorate(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except exceptions:
try:
return eval(use)
except TypeError:
return replace
return wrapper
return decorate