forked from skyhehe123/VoxelNet-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
126 lines (97 loc) · 3.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch.nn as nn
import torch
from torch.autograd import Variable
from config import config as cfg
from data.kitti import KittiDataset
import torch.utils.data as data
import time
from loss import VoxelLoss
from voxelnet import VoxelNet
import torch.optim as optim
import torch.nn.init as init
from nms.pth_nms import pth_nms
import numpy as np
import torch.backends.cudnn
from test_utils import draw_boxes
import cv2
def weights_init(m):
if isinstance(m, nn.Conv2d):
init.xavier_uniform(m.weight.data)
m.bias.data.zero_()
def detection_collate(batch):
voxel_features = []
voxel_coords = []
pos_equal_one = []
neg_equal_one = []
targets = []
images = []
calibs = []
ids = []
for i, sample in enumerate(batch):
voxel_features.append(sample[0])
voxel_coords.append(
np.pad(sample[1], ((0, 0), (1, 0)),
mode='constant', constant_values=i))
pos_equal_one.append(sample[2])
neg_equal_one.append(sample[3])
targets.append(sample[4])
images.append(sample[5])
calibs.append(sample[6])
ids.append(sample[7])
return np.concatenate(voxel_features), \
np.concatenate(voxel_coords), \
np.array(pos_equal_one),\
np.array(neg_equal_one),\
np.array(targets),\
images, calibs, ids
torch.backends.cudnn.enabled=True
# dataset
dataset=KittiDataset(cfg=cfg,root='./data/KITTI',set='train')
data_loader = data.DataLoader(dataset, batch_size=cfg.N, num_workers=4, collate_fn=detection_collate, shuffle=True, \
pin_memory=False)
# network
net = VoxelNet()
net.cuda()
def train():
net.train()
# initialization
print('Initializing weights...')
net.apply(weights_init)
# define optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# define loss function
criterion = VoxelLoss(alpha=1.5, beta=1)
# training process
batch_iterator = None
epoch_size = len(dataset) // cfg.N
print('Epoch size', epoch_size)
for iteration in range(10000):
if (not batch_iterator) or (iteration % epoch_size == 0):
# create batch iterator
batch_iterator = iter(data_loader)
voxel_features, voxel_coords, pos_equal_one, neg_equal_one, targets, images, calibs, ids = next(batch_iterator)
# wrapper to variable
voxel_features = Variable(torch.cuda.FloatTensor(voxel_features))
pos_equal_one = Variable(torch.cuda.FloatTensor(pos_equal_one))
neg_equal_one = Variable(torch.cuda.FloatTensor(neg_equal_one))
targets = Variable(torch.cuda.FloatTensor(targets))
# zero the parameter gradients
optimizer.zero_grad()
# forward
t0 = time.time()
psm,rm = net(voxel_features, voxel_coords)
# calculate loss
conf_loss, reg_loss = criterion(rm, psm, pos_equal_one, neg_equal_one, targets)
loss = conf_loss + reg_loss
# backward
loss.backward()
optimizer.step()
t1 = time.time()
print('Timer: %.4f sec.' % (t1 - t0))
print('iter ' + repr(iteration) + ' || Loss: %.4f || Conf Loss: %.4f || Loc Loss: %.4f' % \
(loss.data[0], conf_loss.data[0], reg_loss.data[0]))
# visualization
#draw_boxes(rm, psm, ids, images, calibs, 'pred')
draw_boxes(targets.data, pos_equal_one.data, images, calibs, ids,'true')
if __name__ == '__main__':
train()