-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathHyperparameters.py
83 lines (63 loc) · 2.36 KB
/
Hyperparameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
class Hyperparameters():
data = '/d/blizzard/lessac_cathy5/wavn'
#data = '../../../data/data_thchs30'
max_Ty = max_iter = 200
# gpu = 2
device = 'cuda:0'
# device = 'cpu'
lr = 0.001
batch_size = 16 # !!!
num_epochs = 100 # !!!
eval_size = 1
save_per_epoch = 1
log_per_batch = 20
log_dir = './log/train{}'
model_path = None
optimizer_path = None
# eval_text = '''er2 dui4 lou2 shi4 cheng2 jiao1 yi4 zhi4 zuo4 yong4 zui4 da4 de5 xian4 gou4'''
#eval_text = '''chua1n pu3 zo3ng to3ng shuo1 ta1 ce2ng ji1ng xia4ng me3i guo2 re2n mi2n che2ng nuo4 jia1ng yo3u yi1 ge4 me3i ha3o de she4ng da4n li3 wu4 sui2 zhe zhe4 yi1 jia3n shui4 fa3 a4n to1ng guo4 ta1 ye3 dui4 xia4n le zhe4 yi1 che2ng nuo4'''
eval_text = 'it took me a long time to develop a brain . now that i have it i\'m not going to be silent !'
ref_wav = '/d/blizzard/lessac_cathy5/wavn/PP_309_093.wav'
lr_step = [500000, 1000000, 2000000]
vocab = "PE abcdefghijklmnopqrstuvwxyz'.?" # english
#vocab = "PE abcdefghijklmnopqrstuvwxyz12345.?" # chinese
char2idx = {char: idx for idx, char in enumerate(vocab)}
E = 256
# reference encoder
ref_enc_filters = [32, 32, 64, 64, 128, 128]
ref_enc_size = [3, 3]
ref_enc_strides = [2, 2]
ref_enc_pad = [1, 1]
ref_enc_gru_size = E // 2
# style token layer
token_num = 10
# token_emb_size = 256
num_heads = 8
# multihead_attn_num_unit = 256
# style_att_type = 'mlp_attention'
# attn_normalize = True
K = 16
decoder_K = 8
embedded_size = E
dropout_p = 0.5
num_banks = 15
num_highways = 4
# sr = 22050 # Sample rate.
sr = 16000 # keda, thchs30, aishell
n_fft = 1024 # fft points (samples) - ALE changed this from 2048
frame_shift = 0.0125 # seconds
frame_length = 0.05 # seconds
hop_length = int(sr * frame_shift) # samples.
win_length = int(sr * frame_length) # samples.
n_mels = 80 # Number of Mel banks to generate
power = 1.2 # Exponent for amplifying the predicted magnitude
n_iter = 50 # Number of inversion iterations
preemphasis = .97 # or None
max_db = 100
ref_db = 20
n_priority_freq = int(3000 / (sr * 0.5) * (n_fft / 2))
r = 5
use_gpu = torch.cuda.is_available()
if __name__ == '__main__':
print(Hyperparameters.char2idx['E'])