Skip to content
This repository has been archived by the owner on Jun 29, 2019. It is now read-only.

Commit

Permalink
initial setup
Browse files Browse the repository at this point in the history
  • Loading branch information
lindahua committed Jan 27, 2013
1 parent 25a8254 commit 240d9a4
Show file tree
Hide file tree
Showing 3 changed files with 201 additions and 0 deletions.
7 changes: 7 additions & 0 deletions LICENSE.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
Copyright (c) 2013 Dahua Lin

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 changes: 27 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# Distances

Evaluation of distances between vectors.

## A List of supported distances

* Minkowski distance
* Euclidean distance
* Squared euclidean distance
* Cityblock distance
* Chebyshev distance
* Hamming distance
* Cosine distance
* Spearman distance
* Kullback-Leibler divergence
* Jensen-Shannon divergence

## Features

* Many of the distances above accepts a weight vector as an optional argument to calculate weighted distances.
* The module supports computation of distances in different ways:
- compute a distance between two vectors
- compute distances between a vector and an array comprised of multiple vectors
- compute distances between corresponding vectors in two arrays along a specific dimension
- compute distances between columns in two matrices in a pairwise manner
* Specialized functions are used to compute pairwise (Squared) Euclidean distances in a much faster way.

167 changes: 167 additions & 0 deletions src/Distances.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
module Distances

export
GeneralizedDistance,
Distance,
cdist,
pdist,
EuclideanDistance,
SquaredEuclideanDistance,
eucdist,
sqeucdist

##########################################################################
#
# The type hierarchy for distances
#
##########################################################################

abstract GeneralizedDistance
abstract Distance <: GeneralizedDistance

type EuclideanDistance <: Distance
end

type SquaredEuclideanDistance <: Distance
end

##########################################################################
#
# General cdist implementation
#
# Remarks
# --------
# cdist(dist, a::Vector, b::Vector) should be implemented respectively
# for each distance.
#
# This general implementation extends them to matrices.
#
##########################################################################

function cdist(dist::GeneralizedDistance, a::AbstractVector, b::AbstractMatrix)
m, n = size(b)

# calculate the first distance (to determine value type)

d1 = cdist(dist, a, b[:,1])
r = Array(typeof(d1), n)
r[1] = d1

# calculate the rest

for i = 2 : n
r[i] = cdist(dist, a, b[:,i])
end

return r
end

function cdist(dist::GeneralizedDistance, a::AbstractMatrix, b::AbstractVector)
m, n = size(a)

# calculate the first distance (to determine value type)

d1 = cdist(dist, a[:,1], b)
r = Array(typeof(d1), n)
r[1] = d1

# calculate the rest

for i = 2 : n
r[i] = cdist(dist, sub(a, 1:m, i), b)
end

return r
end

function cdist(dist::GeneralizedDistance, a::AbstractMatrix, b::AbstractMatrix)
@assert size(a, 2) == size(b, 2)
n = size(a, 2)

# calculate the first distance (to determine distance value type)

d1 = cdist(dist, a[:,1], b[:,1])
r = Array(typeof(d1), n)
r[1] = d1

# calculate the rest

for i = 2 : n
r[i] = cdist(dist, a[:,i], b[:,i])
end

return r
end


##########################################################################
#
# General pdist implementation
#
##########################################################################

function pdist(dist::GeneralizedDistance, a::Matrix, b::Matrix)
m = size(a, 2)
n = size(b, 1)

# calculate the first distance (to determine distance value type)

d1 = cdist(dist, a[:,1], b[:,1])
r = Array(typeof(d1), (m, n))
r[1, 1] = d1

# calculate the rest

for i = 2 : m
b1 = b[:,1]
r[i, 1] = cdist(dist, a[:,i], b1)
end

for j = 2 : n
bj = b[:,j]
r[i, j] = cdist(dist, a[:,i], bj)
end

return r
end

##########################################################################
#
# Specific distances
#
##########################################################################

function cdist{T<:Real}(dist::EuclideanDistance, a::AbstractVector{T}, b::AbstractVector{T})
s::T = 0
n = length(a)
for i = 1 : n # devectorize to make it faster
v = a[i] - b[i]
s += v * v
end
return sqrt(s)
end

function cdist{T<:Real}(dist::SquaredEuclideanDistance, a::AbstractVector{T}, b::AbstractVector{T})
s::T = 0
n = length(a)
for i = 1 : n # devectorize to make it faster
v = a[i] - b[i]
s += v * v
end
return s
end


##########################################################################
#
# Convenient functions
#
##########################################################################

eucdist(a::AbstractArray, b::AbstractArray) = cdist(EuclideanDistance(), a, b)
sqeucdist(a::AbstractArray, b::AbstractArray) = cdist(SquaredEuclideanDistance(), a, b)


end # module end


0 comments on commit 240d9a4

Please sign in to comment.