Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RFC: sort eigenvalues in a canonical order #21598

Merged
merged 15 commits into from
Feb 5, 2019
Next Next commit
sort eigenvalues in a canonical order
  • Loading branch information
stevengj committed Jan 10, 2019
commit 726b3090a82aa2311763e268870a6310a419269c
29 changes: 29 additions & 0 deletions base/combinatorics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,35 @@ isperm(p::Tuple{}) = true
isperm(p::Tuple{Int}) = p[1] == 1
isperm(p::Tuple{Int,Int}) = ((p[1] == 1) & (p[2] == 2)) | ((p[1] == 2) & (p[2] == 1))

# swap columns i and j of a, in-place
function swapcols!(a::AbstractMatrix, i, j)
i == j && return
cols = indices(a,2)
(i in cols && j in cols) || throw(BoundsError())
for k in indices(a,1)
@inbounds a[k,i],a[k,j] = a[k,j],a[k,i]
end
end
# like permute!! applied to each row of a, in-place in a (overwriting p).
function permutecols!!(a::AbstractMatrix, p::AbstractVector{<:Integer})
count = 0
start = 0
while count < length(p)
ptr = start = findnext(p, start+1)
next = p[start]
count += 1
while next != start
swapcols!(a, ptr, next)
p[ptr] = 0
ptr = next
next = p[next]
count += 1
end
p[ptr] = 0
end
a
end

function permute!!(a, p::AbstractVector{<:Integer})
require_one_based_indexing(a, p)
count = 0
Expand Down
8 changes: 5 additions & 3 deletions stdlib/LinearAlgebra/src/bidiag.jl
Original file line number Diff line number Diff line change
Expand Up @@ -690,8 +690,8 @@ end
factorize(A::Bidiagonal) = A

# Eigensystems
eigvals(M::Bidiagonal) = M.dv
function eigvecs(M::Bidiagonal{T}) where T
eigvals(M::Bidiagonal; sortby::Union{Function,Nothing}=eigsortby) = sortby===nothing ? M.dv : sort(M.dv, by=sortby)
function eigvecs_(M::Bidiagonal{T}) where T # non-sorted
n = length(M.dv)
Q = Matrix{T}(undef, n,n)
blks = [0; findall(x -> x == 0, M.ev); n]
Expand Down Expand Up @@ -723,4 +723,6 @@ function eigvecs(M::Bidiagonal{T}) where T
end
Q #Actually Triangular
end
eigen(M::Bidiagonal) = Eigen(eigvals(M), eigvecs(M))
eigvecs(M::Bidiagonal{T}; sortby::Union{Function,Nothing}=eigsortby) =
sorteigvecs!(M.dv, eigvecs_(M), sortby)
eigen(M::Bidiagonal) = Eigen(sorteig!(copy(M.dv), eigvecs_(M), sortby)...)
13 changes: 7 additions & 6 deletions stdlib/LinearAlgebra/src/diagonal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -524,15 +524,16 @@ function pinv(D::Diagonal{T}, tol::Real) where T
end

#Eigensystem
eigvals(D::Diagonal{<:Number}; permute::Bool=true, scale::Bool=true) = D.diag
eigvals(D::Diagonal; permute::Bool=true, scale::Bool=true) =
[eigvals(x) for x in D.diag] #For block matrices, etc.
eigvecs(D::Diagonal) = Matrix{eltype(D)}(I, size(D))
function eigen(D::Diagonal; permute::Bool=true, scale::Bool=true)
eigvals(D::Diagonal{<:Number}; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby) = sortby === nothing ? D.diag : sort(D.diag, by=sortby)
eigvals_(D::Diagonal) = [eigvals(x) for x in D.diag] # non-sorted copy, for block matrices etc.
eigvals(D::Diagonal; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby) =
sorteigvals!(eigvals_(D), sortby)
eigvecs(D::Diagonal; sortby::Union{Function,Nothing}=eigsortby) = sorteigvecs!(D.diag, Matrix{eltype(D)}(I, size(D)), sortby)
function eigen(D::Diagonal; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby)
if any(!isfinite, D.diag)
throw(ArgumentError("matrix contains Infs or NaNs"))
end
Eigen(eigvals(D), eigvecs(D))
Eigen(sorteig!(eigvals_(D), Matrix{eltype(D)}(I, size(D)))...)
end

#Singular system
Expand Down
128 changes: 77 additions & 51 deletions stdlib/LinearAlgebra/src/eigen.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,13 +27,34 @@ Base.iterate(S::Union{Eigen,GeneralizedEigen}, ::Val{:done}) = nothing

isposdef(A::Union{Eigen,GeneralizedEigen}) = isreal(A.values) && all(x -> x > 0, A.values)

# pick a canonical ordering to avoid returning eigenvalues in "random" order
# as is the LAPACK default (for complex λ — LAPACK sorts by λ for the Hermitian/Symmetric case)
eigsortby::Real) = λ
eigsortby::Complex) = (real(λ),imag(λ))
function sorteig!(λ, X, sortby=eigsortby)
if sortby !== nothing && !issorted(λ, by=sortby)
p = sortperm(λ; alg=QuickSort, by=sortby)
permute!(λ, p)
Base.permutecols!!(X, p)
end
return λ, X
end
sorteigvals!(λ, sortby=eigsortby) = sortby === nothing ? λ : sort!(λ, by=sortby)
function sorteigvecs!(λ, X, sortby=eigsortby) # doesn't modify λ
if sortby !== nothing && !issorted(λ, by=sortby)
p = sortperm(λ; alg=QuickSort, by=sortby)
Base.permutecols!!(X, p)
end
return X
end

"""
eigen!(A, [B])
eigen!(A, [B]; permute, scale, sortby)
Same as [`eigen`](@ref), but saves space by overwriting the input `A` (and
`B`), instead of creating a copy.
"""
function eigen!(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true) where T<:BlasReal
function eigen!(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby) where T<:BlasReal
n = size(A, 2)
n == 0 && return Eigen(zeros(T, 0), zeros(T, 0, 0))
issymmetric(A) && return eigen!(Symmetric(A))
Expand All @@ -53,18 +74,19 @@ function eigen!(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true) where
end
j += 1
end
return Eigen(complex.(WR, WI), evec)
return Eigen(sorteig!(complex.(WR, WI), evec, sortby)...)
end

function eigen!(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true) where T<:BlasComplex
function eigen!(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby) where T<:BlasComplex
n = size(A, 2)
n == 0 && return Eigen(zeros(T, 0), zeros(T, 0, 0))
ishermitian(A) && return eigen!(Hermitian(A))
return Eigen(LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'V', 'N', A)[[2,4]]...)
eval, evec = LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'V', 'N', A)[[2,4]]
return Eigen(sorteig!(eval, evec, sortby)...)
end

"""
eigen(A; permute::Bool=true, scale::Bool=true) -> Eigen
eigen(A; permute::Bool=true, scale::Bool=true, sortby) -> Eigen
Computes the eigenvalue decomposition of `A`, returning an `Eigen` factorization object `F`
which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
Expand All @@ -79,6 +101,10 @@ before the eigenvector calculation. The option `permute=true` permutes the matri
closer to upper triangular, and `scale=true` scales the matrix by its diagonal elements to
make rows and columns more equal in norm. The default is `true` for both options.
By default, the eigenvalues and vectors are sorted lexicographically by `(real(λ),imag(λ))`.
A different comparison function `by(λ)` can be passed to `sortby`, or you can pass
`sortby=nothing` to leave the eigenvalues in an arbitrary order.
# Examples
```jldoctest
julia> F = eigen([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])
Expand Down Expand Up @@ -112,18 +138,18 @@ julia> vals == F.values && vecs == F.vectors
true
```
"""
function eigen(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true) where T
function eigen(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby) where T
AA = copy_oftype(A, eigtype(T))
isdiag(AA) && return eigen(Diagonal(AA), permute = permute, scale = scale)
return eigen!(AA, permute = permute, scale = scale)
isdiag(AA) && return eigen(Diagonal(AA), permute = permute, scale = scale, sortby = sortby)
return eigen!(AA, permute = permute, scale = scale, sortby = sortby)
end
eigen(x::Number) = Eigen([x], fill(one(x), 1, 1))

"""
eigvecs(A; permute::Bool=true, scale::Bool=true) -> Matrix
eigvecs(A; permute::Bool=true, scale::Bool=true, `sortby`) -> Matrix
Return a matrix `M` whose columns are the eigenvectors of `A`. (The `k`th eigenvector can
be obtained from the slice `M[:, k]`.) The `permute` and `scale` keywords are the same as
be obtained from the slice `M[:, k]`.) The `permute`, `scale`, and `sortby` keywords are the same as
for [`eigen`](@ref).
# Examples
Expand All @@ -135,19 +161,17 @@ julia> eigvecs([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])
0.0 0.0 1.0
```
"""
eigvecs(A::Union{Number, AbstractMatrix}; permute::Bool=true, scale::Bool=true) =
eigvecs(eigen(A, permute=permute, scale=scale))
eigvecs(A::Union{Number, AbstractMatrix}; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby) =
eigvecs(eigen(A, permute=permute, scale=scale, sortby=sortby))
eigvecs(F::Union{Eigen, GeneralizedEigen}) = F.vectors

eigvals(F::Union{Eigen, GeneralizedEigen}) = F.values

"""
eigvals!(A; permute::Bool=true, scale::Bool=true) -> values
eigvals!(A; permute::Bool=true, scale::Bool=true, sortby) -> values
Same as [`eigvals`](@ref), but saves space by overwriting the input `A`, instead of creating a copy.
The option `permute=true` permutes the matrix to become
closer to upper triangular, and `scale=true` scales the matrix by its diagonal elements to
make rows and columns more equal in norm.
The `permute`, `scale`, and `sortby` keywords are the same as for [`eigen`](@ref).
!!! note
The input matrix `A` will not contain its eigenvalues after `eigvals!` is
Expand All @@ -171,29 +195,27 @@ julia> A
0.0 5.37228
```
"""
function eigvals!(A::StridedMatrix{<:BlasReal}; permute::Bool=true, scale::Bool=true)
function eigvals!(A::StridedMatrix{<:BlasReal}; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby)
issymmetric(A) && return eigvals!(Symmetric(A))
_, valsre, valsim, _ = LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'N', 'N', A)
return iszero(valsim) ? valsre : complex.(valsre, valsim)
return sorteigvals!(iszero(valsim) ? valsre : complex.(valsre, valsim), sortby)
end
function eigvals!(A::StridedMatrix{<:BlasComplex}; permute::Bool=true, scale::Bool=true)
function eigvals!(A::StridedMatrix{<:BlasComplex}; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby)
ishermitian(A) && return eigvals(Hermitian(A))
return LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'N', 'N', A)[2]
return sorteigvals!(LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'N', 'N', A)[2], sortby)
end

# promotion type to use for eigenvalues of a Matrix{T}
eigtype(T) = promote_type(Float32, typeof(zero(T)/sqrt(abs2(one(T)))))

"""
eigvals(A; permute::Bool=true, scale::Bool=true) -> values
eigvals(A; permute::Bool=true, scale::Bool=true, sortby) -> values
Return the eigenvalues of `A`.
For general non-symmetric matrices it is possible to specify how the matrix is balanced
before the eigenvalue calculation. The option `permute=true` permutes the matrix to
become closer to upper triangular, and `scale=true` scales the matrix by its diagonal
elements to make rows and columns more equal in norm. The default is `true` for both
options.
before the eigenvalue calculation. The `permute`, `scale`, and `sortby` keywords are
the same as for [`eigen`](@ref).
# Examples
```jldoctest
Expand All @@ -208,8 +230,8 @@ julia> eigvals(diag_matrix)
4.0
```
"""
eigvals(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true) where T =
eigvals!(copy_oftype(A, eigtype(T)), permute = permute, scale = scale)
eigvals(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true, sortby::Union{Function,Nothing}=eigsortby) where T =
eigvals!(copy_oftype(A, eigtype(T)), permute = permute, scale = scale, sortby = sortby)

"""
For a scalar input, `eigvals` will return a scalar.
Expand Down Expand Up @@ -309,7 +331,7 @@ inv(A::Eigen) = A.vectors * inv(Diagonal(A.values)) / A.vectors
det(A::Eigen) = prod(A.values)

# Generalized eigenproblem
function eigen!(A::StridedMatrix{T}, B::StridedMatrix{T}) where T<:BlasReal
function eigen!(A::StridedMatrix{T}, B::StridedMatrix{T}; sortby::Union{Function,Nothing}=eigsortby) where T<:BlasReal
issymmetric(A) && isposdef(B) && return eigen!(Symmetric(A), Symmetric(B))
n = size(A, 1)
alphar, alphai, beta, _, vr = LAPACK.ggev!('N', 'V', A, B)
Expand All @@ -329,17 +351,17 @@ function eigen!(A::StridedMatrix{T}, B::StridedMatrix{T}) where T<:BlasReal
end
j += 1
end
return GeneralizedEigen(complex.(alphar, alphai)./beta, vecs)
return GeneralizedEigen(sorteig!(complex.(alphar, alphai)./beta, vecs, sortby)...)
end

function eigen!(A::StridedMatrix{T}, B::StridedMatrix{T}) where T<:BlasComplex
ishermitian(A) && isposdef(B) && return eigen!(Hermitian(A), Hermitian(B))
alpha, beta, _, vr = LAPACK.ggev!('N', 'V', A, B)
return GeneralizedEigen(alpha./beta, vr)
return GeneralizedEigen(sorteig!(alpha./beta, vr)...)
end

"""
eigen(A, B) -> GeneralizedEigen
eigen(A, B; sortby) -> GeneralizedEigen
Computes the generalized eigenvalue decomposition of `A` and `B`, returning a
`GeneralizedEigen` factorization object `F` which contains the generalized eigenvalues in
Expand All @@ -348,6 +370,10 @@ Computes the generalized eigenvalue decomposition of `A` and `B`, returning a
Iterating the decomposition produces the components `F.values` and `F.vectors`.
By default, the eigenvalues and vectors are sorted lexicographically by `(real(λ),imag(λ))`.
A different comparison function `by(λ)` can be passed to `sortby`, or you can pass
`sortby=nothing` to leave the eigenvalues in an arbitrary order.
# Examples
```jldoctest
julia> A = [1 0; 0 -1]
Expand All @@ -364,29 +390,29 @@ julia> F = eigen(A, B);
julia> F.values
2-element Array{Complex{Float64},1}:
0.0 + 1.0im
0.0 - 1.0im
0.0 + 1.0im
julia> F.vectors
2×2 Array{Complex{Float64},2}:
0.0-1.0im 0.0+1.0im
-1.0-0.0im -1.0+0.0im
0.0+1.0im 0.0-1.0im
-1.0+0.0im -1.0-0.0im
julia> vals, vecs = F; # destructuring via iteration
julia> vals == F.values && vecs == F.vectors
true
```
"""
function eigen(A::AbstractMatrix{TA}, B::AbstractMatrix{TB}) where {TA,TB}
function eigen(A::AbstractMatrix{TA}, B::AbstractMatrix{TB}; sortby::Union{Function,Nothing}=eigsortby) where {TA,TB}
S = promote_type(eigtype(TA),TB)
return eigen!(copy_oftype(A, S), copy_oftype(B, S))
return eigen!(copy_oftype(A, S), copy_oftype(B, S); sortby=sortby)
end

eigen(A::Number, B::Number) = eigen(fill(A,1,1), fill(B,1,1))

"""
eigvals!(A, B) -> values
eigvals!(A, B; sortby) -> values
Same as [`eigvals`](@ref), but saves space by overwriting the input `A` (and `B`),
instead of creating copies.
Expand All @@ -409,8 +435,8 @@ julia> B = [0. 1.; 1. 0.]
julia> eigvals!(A, B)
2-element Array{Complex{Float64},1}:
0.0 + 1.0im
0.0 - 1.0im
0.0 + 1.0im
julia> A
2×2 Array{Float64,2}:
Expand All @@ -423,19 +449,19 @@ julia> B
0.0 1.0
```
"""
function eigvals!(A::StridedMatrix{T}, B::StridedMatrix{T}) where T<:BlasReal
function eigvals!(A::StridedMatrix{T}, B::StridedMatrix{T}; sortby::Union{Function,Nothing}=eigsortby) where T<:BlasReal
issymmetric(A) && isposdef(B) && return eigvals!(Symmetric(A), Symmetric(B))
alphar, alphai, beta, vl, vr = LAPACK.ggev!('N', 'N', A, B)
return (iszero(alphai) ? alphar : complex.(alphar, alphai))./beta
return sorteigvals!((iszero(alphai) ? alphar : complex.(alphar, alphai))./beta, sortby)
end
function eigvals!(A::StridedMatrix{T}, B::StridedMatrix{T}) where T<:BlasComplex
function eigvals!(A::StridedMatrix{T}, B::StridedMatrix{T}; sortby::Union{Function,Nothing}=eigsortby) where T<:BlasComplex
ishermitian(A) && isposdef(B) && return eigvals!(Hermitian(A), Hermitian(B))
alpha, beta, vl, vr = LAPACK.ggev!('N', 'N', A, B)
alpha./beta
return sorteigvals!(alpha./beta, sortby)
end

"""
eigvals(A, B) -> values
eigvals(A, B; sortby) -> values
Computes the generalized eigenvalues of `A` and `B`.
Expand All @@ -453,17 +479,17 @@ julia> B = [0 1; 1 0]
julia> eigvals(A,B)
2-element Array{Complex{Float64},1}:
0.0 + 1.0im
0.0 - 1.0im
0.0 + 1.0im
```
"""
function eigvals(A::AbstractMatrix{TA}, B::AbstractMatrix{TB}) where {TA,TB}
function eigvals(A::AbstractMatrix{TA}, B::AbstractMatrix{TB}; sortby::Union{Function,Nothing}=eigsortby) where {TA,TB}
S = promote_type(eigtype(TA),TB)
return eigvals!(copy_oftype(A, S), copy_oftype(B, S))
return eigvals!(copy_oftype(A, S), copy_oftype(B, S); sortby=sortby)
end

"""
eigvecs(A, B) -> Matrix
eigvecs(A, B; sortby) -> Matrix
Return a matrix `M` whose columns are the generalized eigenvectors of `A` and `B`. (The `k`th eigenvector can
be obtained from the slice `M[:, k]`.)
Expand All @@ -482,11 +508,11 @@ julia> B = [0 1; 1 0]
julia> eigvecs(A, B)
2×2 Array{Complex{Float64},2}:
0.0-1.0im 0.0+1.0im
-1.0-0.0im -1.0+0.0im
0.0+1.0im 0.0-1.0im
-1.0+0.0im -1.0-0.0im
```
"""
eigvecs(A::AbstractMatrix, B::AbstractMatrix) = eigvecs(eigen(A, B))
eigvecs(A::AbstractMatrix, B::AbstractMatrix; sortby::Union{Function,Nothing}=eigsortby) = eigvecs(eigen(A, B; sortby=sortby))

function show(io::IO, mime::MIME{Symbol("text/plain")}, F::Union{Eigen,GeneralizedEigen})
summary(io, F); println(io)
Expand Down
Loading