Skip to content

Commit

Permalink
Add hpmv! to BLAS in stdlib/LinearAlgebra
Browse files Browse the repository at this point in the history
  • Loading branch information
iolaszlo committed Dec 28, 2019
1 parent acb7bd9 commit 4eee1d6
Show file tree
Hide file tree
Showing 2 changed files with 115 additions and 0 deletions.
72 changes: 72 additions & 0 deletions stdlib/LinearAlgebra/src/blas.jl
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ export
gemv,
hemv!,
hemv,
hpmv!,
sbmv!,
sbmv,
symv!,
Expand Down Expand Up @@ -823,6 +824,77 @@ Only the [`ul`](@ref stdlib-blas-uplo) triangle of `A` is used.
"""
hemv(ul, A, x)

### hpmv!, (HP) Hermitian packed matrix-vector operation defined as y := alpha*A*x + beta*y.
for (fname, elty) in ((:zhpmv_, :ComplexF64),
(:chpmv_, :ComplexF32))
@eval begin
# SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
# Y <- ALPHA*AP*X + BETA*Y
# * .. Scalar Arguments ..
# DOUBLE PRECISION ALPHA,BETA
# INTEGER INCX,INCY,N
# CHARACTER UPLO
# * .. Array Arguments ..
# DOUBLE PRECISION A(N,N),X(N),Y(N)
function hpmv!(uplo::AbstractChar,
n::BlasInt,
α::$elty,
AP::Union{Ptr{$elty}, AbstractArray{$elty}},
x::Union{Ptr{$elty}, AbstractArray{$elty}},
incx::Integer,
β::$elty,
y::Union{Ptr{$elty}, AbstractArray{$elty}},
incy::Integer)

ccall((@blasfunc($fname), libblas), Cvoid,
(Ref{UInt8}, # uplo,
Ref{BlasInt}, # n,
Ref{$elty}, # α,
Ptr{$elty}, # AP,
Ptr{$elty}, # x,
Ref{BlasInt}, # incx,
Ref{$elty}, # β,
Ptr{$elty}, # y, output
Ref{BlasInt}), # incy
uplo,
n,
α,
AP,
x,
incx,
β,
y,
incy)
end
end
end

function hpmv!(uplo::AbstractChar,
α::Number, AP::Union{DenseArray{T}, AbstractVector{T}}, x::Union{DenseArray{T}, AbstractVector{T}},
β::Number, y::Union{DenseArray{T}, AbstractVector{T}}) where T<:BlasFloat
require_one_based_indexing(AP, x, y)
N = length(x)
if N != length(y)
throw(DimensionMismatch("x has length $(N), but y has length $(length(y))"))
end
if length(AP) < Int64(N*(N+1)/2)
throw(DimensionMismatch("Packed Hermitian matrix A has size smaller than length(x) = $(N)."))
end
GC.@preserve x y AP hpmv!(uplo, N, convert(T, α), AP, pointer(x), BlasInt(stride(x, 1)), convert(T, β), pointer(y), BlasInt(stride(y, 1)))
y
end

"""
hpmv!(uplo, α, AP, x, β, y)
Update vector `y` as `α*AP*x + β*y` where `AP` is a packed Hermitian matrix.
The storage layout for `AP` is described in the reference BLAS module, level-2 BLAS at
<http://www.netlib.org/lapack/explore-html/>.
Return the updated `y`.
"""
hpmv!

### sbmv, (SB) symmetric banded matrix-vector multiplication
for (fname, elty) in ((:dsbmv_,:Float64),
(:ssbmv_,:Float32))
Expand Down
43 changes: 43 additions & 0 deletions stdlib/LinearAlgebra/test/blas.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ using LinearAlgebra: BlasReal, BlasComplex
Random.seed!(100)
## BLAS tests - testing the interface code to BLAS routines
@testset for elty in [Float32, Float64, ComplexF32, ComplexF64]

@testset "syr2k!" begin
U = randn(5,2)
V = randn(5,2)
Expand Down Expand Up @@ -200,6 +201,48 @@ Random.seed!(100)
@test_throws DimensionMismatch BLAS.trmm('R','U','N','N',one(elty),triu(Cnn),Cnm)
end

#hpmv!
@testset "hpmv!" begin
if elty == ComplexF32 || elty == ComplexF64
# Both matrix dimensions N coincide, as we have Hermitian matrices.
for N in 2:5
# Define the inputs and outputs of hpmv!, y = α*A*x+β*y
α = rand(elty) + elty(im) * rand(elty)
M = rand(elty, N, N) + elty(im)*rand(elty, N ,N)
A = (M+M')/elty(2.0)
x = rand(elty, N) + elty(im)*rand(elty, N)
β = rand(elty) + elty(im) * rand(elty)
y = rand(elty, N) + elty(im)*rand(elty, N)

y_result_julia = α*A*x+β*y

# Create lower triangular packing of A
AP = typeof(A[1,1])[]
for j in 1:N
for i in j:N
push!(AP, A[i,j])
end
end

y_result_blas_lower = copy(y)
BLAS.hpmv!('L', α, AP, x, β, y_result_blas_lower)
@test y_result_juliay_result_blas_lower

# Create upper triangular packing of A
AP = typeof(A[1,1])[]
for j in 1:N
for i in 1:j
push!(AP, A[i,j])
end
end

y_result_blas_upper = copy(y)
BLAS.hpmv!('U', α, AP, x, β, y_result_blas_upper)
@test y_result_juliay_result_blas_upper
end
end
end

#trsm
A = triu(rand(elty,n,n))
B = rand(elty,(n,n))
Expand Down

0 comments on commit 4eee1d6

Please sign in to comment.