Skip to content

Commit

Permalink
Dispatch more cases to BLAS.gemm! (#33229)
Browse files Browse the repository at this point in the history
* Dispatch more cases to BLAS.gemm!

* Use α and β instead of alpha′ and beta′

(cherry picked from commit 51b3227)
  • Loading branch information
tkf authored and KristofferC committed Sep 18, 2019
1 parent 786ab84 commit 4e5f01c
Show file tree
Hide file tree
Showing 2 changed files with 13 additions and 5 deletions.
16 changes: 12 additions & 4 deletions stdlib/LinearAlgebra/src/matmul.jl
Original file line number Diff line number Diff line change
Expand Up @@ -152,15 +152,23 @@ function (*)(A::AbstractMatrix, B::AbstractMatrix)
TS = promote_op(matprod, eltype(A), eltype(B))
mul!(similar(B, TS, (size(A,1), size(B,2))), A, B)
end
@inline mul!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T},
alpha::Union{T, Bool}, beta::Union{T, Bool}) where {T<:BlasFloat} =
gemm_wrapper!(C, 'N', 'N', A, B, MulAddMul(alpha, beta))

@inline function mul!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T},
α::Number, β::Number) where {T<:BlasFloat}
alpha, beta = promote(α, β, zero(T))
if alpha isa T && beta isa T
return gemm_wrapper!(C, 'N', 'N', A, B, MulAddMul(alpha, beta))
else
return generic_matmatmul!(C, 'N', 'N', A, B, MulAddMul(α, β))
end
end

# Complex Matrix times real matrix: We use that it is generally faster to reinterpret the
# first matrix as a real matrix and carry out real matrix matrix multiply
for elty in (Float32,Float64)
@eval begin
@inline function mul!(C::StridedMatrix{Complex{$elty}}, A::StridedVecOrMat{Complex{$elty}}, B::StridedVecOrMat{$elty},
alpha::Union{$elty, Bool}, beta::Union{$elty, Bool})
alpha::Real, beta::Real)
Afl = reinterpret($elty, A)
Cfl = reinterpret($elty, C)
mul!(Cfl, Afl, B, alpha, beta)
Expand Down
2 changes: 1 addition & 1 deletion stdlib/LinearAlgebra/test/matmul.jl
Original file line number Diff line number Diff line change
Expand Up @@ -586,7 +586,7 @@ end
A = rand(n, n)
B = rand(n, n)
C = zeros(n, n)
mul!(C, A, B, -1, 0)
mul!(C, A, B, -1 + 0im, 0)
D = -A * B
@test D C

Expand Down

0 comments on commit 4e5f01c

Please sign in to comment.