Skip to content

Commit

Permalink
Avoid checking the diagonal for non-real elements when constructing H…
Browse files Browse the repository at this point in the history
…ermitians
  • Loading branch information
andreasnoack committed Aug 24, 2017
1 parent 96e3a29 commit 4a5cbbb
Show file tree
Hide file tree
Showing 4 changed files with 70 additions and 13 deletions.
35 changes: 26 additions & 9 deletions base/linalg/symmetric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -74,13 +74,15 @@ julia> Hlower = Hermitian(A, :L)
```
Note that `Hupper` will not be equal to `Hlower` unless `A` is itself Hermitian (e.g. if `A == A'`).
All non-real parts of the diagonal will be ignored.
```julia
Hermitian(fill(complex(1,1), 1, 1)) == fill(1, 1, 1)
```
"""
function Hermitian(A::AbstractMatrix, uplo::Symbol=:U)
n = checksquare(A)
for i=1:n
isreal(A[i, i]) || throw(ArgumentError(
"Cannot construct Hermitian from matrix with nonreal diagonals"))
end
Hermitian{eltype(A),typeof(A)}(A, char_uplo(uplo))
end

Expand Down Expand Up @@ -113,13 +115,21 @@ size(A::HermOrSym, d) = size(A.data, d)
size(A::HermOrSym) = size(A.data)
@inline function getindex(A::Symmetric, i::Integer, j::Integer)
@boundscheck checkbounds(A, i, j)
@inbounds r = (A.uplo == 'U') == (i < j) ? A.data[i, j] : A.data[j, i]
r
@inbounds if (A.uplo == 'U') == (i < j)
return A.data[i, j]
else
return A.data[j, i]
end
end
@inline function getindex(A::Hermitian, i::Integer, j::Integer)
@boundscheck checkbounds(A, i, j)
@inbounds r = (A.uplo == 'U') == (i < j) ? A.data[i, j] : conj(A.data[j, i])
r
@inbounds if (A.uplo == 'U') == (i < j)
return A.data[i, j]
elseif i == j
return eltype(A)(real(A.data[i, j]))
else
return conj(A.data[j, i])
end
end

function setindex!(A::Symmetric, v, i::Integer, j::Integer)
Expand Down Expand Up @@ -150,9 +160,16 @@ end

# Conversion
convert(::Type{Matrix}, A::Symmetric) = copytri!(convert(Matrix, copy(A.data)), A.uplo)
convert(::Type{Matrix}, A::Hermitian) = copytri!(convert(Matrix, copy(A.data)), A.uplo, true)
function convert(::Type{Matrix}, A::Hermitian)
B = copytri!(convert(Matrix, copy(A.data)), A.uplo, true)
for i = 1:size(A, 1)
B[i,i] = real(B[i,i])
end
return B
end
convert(::Type{Array}, A::Union{Symmetric,Hermitian}) = convert(Matrix, A)
full(A::Union{Symmetric,Hermitian}) = convert(Array, A)

parent(A::HermOrSym) = A.data
convert(::Type{Symmetric{T,S}},A::Symmetric{T,S}) where {T,S<:AbstractMatrix} = A
convert(::Type{Symmetric{T,S}},A::Symmetric) where {T,S<:AbstractMatrix} = Symmetric{T,S}(convert(S,A.data),A.uplo)
Expand Down
30 changes: 28 additions & 2 deletions base/sparse/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -928,8 +928,34 @@ convert(::Type{Sparse}, A::SparseMatrixCSC{Complex{Float32},<:ITypes}) =
convert(Sparse, convert(SparseMatrixCSC{Complex{Float64},SuiteSparse_long}, A))
convert(::Type{Sparse}, A::Symmetric{Float64,SparseMatrixCSC{Float64,SuiteSparse_long}}) =
Sparse(A.data, A.uplo == 'L' ? -1 : 1)
convert(::Type{Sparse}, A::Hermitian{Tv,SparseMatrixCSC{Tv,SuiteSparse_long}}) where {Tv<:VTypes} =
Sparse(A.data, A.uplo == 'L' ? -1 : 1)
# The convert method for Hermitian is very similar to the general convert method, but we need to
# remove any non real elements in the diagonal because, in contrast to BLAS/LAPACK these are not
# ignored by CHOLMOD. If even tiny imaginary parts are present CHOLMOD will fail with a non-positive
# definite/zero pivot error.
function convert(::Type{Sparse}, AH::Hermitian{Tv,SparseMatrixCSC{Tv,SuiteSparse_long}}) where {Tv<:VTypes}
A = AH.data

# Here we allocate a Symmetric/Hermitian CHOLMOD.Sparse matrix so we only need to copy
# a single triangle of AH
o = allocate_sparse(A.m, A.n, length(A.nzval), true, true, AH.uplo == 'L' ? -1 : 1, Tv)
s = unsafe_load(o.p)
for i = 1:length(A.colptr)
unsafe_store!(s.p, A.colptr[i] - 1, i)
end
for i = 1:length(A.rowval)
unsafe_store!(s.i, A.rowval[i] - 1, i)
end
for j = 1:A.n
for ip = A.colptr[j]:A.colptr[j + 1] - 1
v = A.nzval[ip]
unsafe_store!(s.x, ifelse(A.rowval[ip] == j, real(v), v), ip)
end
end

@isok check_sparse(o)

return o
end
function convert(::Type{Sparse},
A::Union{SparseMatrixCSC{BigFloat,Ti},
Symmetric{BigFloat,SparseMatrixCSC{BigFloat,Ti}},
Expand Down
10 changes: 8 additions & 2 deletions test/linalg/symmetric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -325,6 +325,12 @@ end
@test eigvals(Mi7647) == eigvals(Mi7647, 0.5, 3.5) == [1.0:3.0;]
end

@testset "Hermitian wrapper ignores imaginary parts on diagonal" begin
A = [1.0+im 2.0; 2.0 0.0]
@test !ishermitian(A)
@test Hermitian(A)[1,1] == 1
end

@testset "Issue #7933" begin
A7933 = [1 2; 3 4]
B7933 = copy(A7933)
Expand All @@ -339,10 +345,10 @@ end
@test_throws ArgumentError f(A, 1:4)
end

@testset "Issue #10671" begin
@testset "Ignore imaginary part of Hermitian diagonal" begin
A = [1.0+im 2.0; 2.0 0.0]
@test !ishermitian(A)
@test_throws ArgumentError Hermitian(A)
@test diag(Hermitian(A)) == real(diag(A))
end

# Unary minus for Symmetric/Hermitian matrices
Expand Down
8 changes: 8 additions & 0 deletions test/sparse/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -650,6 +650,14 @@ A = sprandn(5,5,0.4) |> t -> t't + I
B = complex.(randn(5,2), randn(5,2))
@test cholfact(A)\B A\B

# Test that imaginary parts in Hermitian{T,SparseMatrixCSC{T}} are ignored
let A = sparse([1,2,3,4,1], [1,2,3,4,2], [complex(2.0,1),2,2,2,1])
Fs = cholfact(Hermitian(A))
Fd = cholfact(Hermitian(Array(A)))
@test sparse(Fs) Hermitian(A)
@test Fs\ones(4) Fd\ones(4)
end

# Make sure that ldltfact performs an LDLt (Issue #19032)
let m = 400, n = 500
A = sprandn(m, n, .2)
Expand Down

0 comments on commit 4a5cbbb

Please sign in to comment.