-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
rational.jl
379 lines (327 loc) · 14.4 KB
/
rational.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Test
@testset "Rationals" begin
@test 1//1 == 1
@test 2//2 == 1
@test 1//1 == 1//1
@test 2//2 == 1//1
@test 2//4 == 3//6
@test 1//2 + 1//2 == 1
@test (-1)//3 == -(1//3)
@test 1//2 + 3//4 == 5//4
@test 1//3 * 3//4 == 1//4
@test 1//2 / 3//4 == 2//3
@test 1//0 == 1//0
@test 5//0 == 1//0
@test -1//0 == -1//0
@test -7//0 == -1//0
@test_throws OverflowError -(0x01//0x0f)
@test_throws OverflowError -(typemin(Int)//1)
@test_throws OverflowError (typemax(Int)//3) + 1
@test_throws OverflowError (typemax(Int)//3) * 2
@test (typemax(Int)//1) * (1//typemax(Int)) == 1
@test (typemax(Int)//1) / (typemax(Int)//1) == 1
@test (1//typemax(Int)) / (1//typemax(Int)) == 1
@test_throws OverflowError (1//2)^63
@test @inferred(rationalize(Int, 3.0, 0.0)) === 3//1
@test @inferred(rationalize(Int, 3.0, 0)) === 3//1
@test_throws ArgumentError rationalize(Int, big(3.0), -1.)
# issue 26823
@test_throws InexactError rationalize(Int, NaN)
for a = -5:5, b = -5:5
if a == b == 0; continue; end
if ispow2(b)
@test a//b == a/b
@test convert(Rational,a/b) == a//b
end
@test rationalize(a/b) == a//b
@test a//b == a//b
if b == 0
@test_throws DivideError round(Integer,a//b) == round(Integer,a/b)
else
@test round(Integer,a//b) == round(Integer,a/b)
end
for c = -5:5
@test (a//b == c) == (a/b == c)
@test (a//b != c) == (a/b != c)
@test (a//b <= c) == (a/b <= c)
@test (a//b < c) == (a/b < c)
@test (a//b >= c) == (a/b >= c)
@test (a//b > c) == (a/b > c)
for d = -5:5
if c == d == 0; continue; end
@test (a//b == c//d) == (a/b == c/d)
@test (a//b != c//d) == (a/b != c/d)
@test (a//b <= c//d) == (a/b <= c/d)
@test (a//b < c//d) == (a/b < c/d)
@test (a//b >= c//d) == (a/b >= c/d)
@test (a//b > c//d) == (a/b > c/d)
end
end
end
@test 0.5 == 1//2
@test 0.1 != 1//10
@test 0.1 == 3602879701896397//36028797018963968
@test Inf == 1//0 == 2//0 == typemax(Int)//0
@test -Inf == -1//0 == -2//0 == -typemax(Int)//0
@test floatmin() != 1//(BigInt(2)^1022+1)
@test floatmin() == 1//(BigInt(2)^1022)
@test floatmin() != 1//(BigInt(2)^1022-1)
@test floatmin()/2 != 1//(BigInt(2)^1023+1)
@test floatmin()/2 == 1//(BigInt(2)^1023)
@test floatmin()/2 != 1//(BigInt(2)^1023-1)
@test nextfloat(0.0) != 1//(BigInt(2)^1074+1)
@test nextfloat(0.0) == 1//(BigInt(2)^1074)
@test nextfloat(0.0) != 1//(BigInt(2)^1074-1)
@test 1/3 < 1//3
@test !(1//3 < 1/3)
@test -1/3 < 1//3
@test -1/3 > -1//3
@test 1/3 > -1//3
@test 1/5 > 1//5
@test 1//3 < Inf
@test 0//1 < Inf
@test 1//0 == Inf
@test -1//0 == -Inf
@test -1//0 != Inf
@test 1//0 != -Inf
@test !(1//0 < Inf)
@test !(1//3 < NaN)
@test !(1//3 == NaN)
@test !(1//3 > NaN)
# PR 29561
@test abs(one(Rational{UInt})) === one(Rational{UInt})
@test abs(one(Rational{Int})) === one(Rational{Int})
@test abs(-one(Rational{Int})) === one(Rational{Int})
end
@testset "Rational methods" begin
rand_int = rand(Int8)
for T in [Int8, Int16, Int32, Int128, BigInt]
@test numerator(convert(T, rand_int)) == rand_int
@test denominator(convert(T, rand_int)) == 1
@test typemin(Rational{T}) == -one(T)//zero(T)
@test typemax(Rational{T}) == one(T)//zero(T)
@test widen(Rational{T}) == Rational{widen(T)}
end
@test Rational(Float32(rand_int)) == Rational(rand_int)
@test Rational(Rational(rand_int)) == Rational(rand_int)
@test begin
var = -Rational(UInt32(0))
var == UInt32(0)
end
@test Rational(rand_int, 3)/Complex(3, 2) == Complex(Rational(rand_int, 13), -Rational(rand_int*2, 39))
@test Complex(rand_int, 0) == Rational(rand_int)
@test Rational(rand_int) == Complex(rand_int, 0)
@test (Complex(rand_int, 4) == Rational(rand_int)) == false
@test (Rational(rand_int) == Complex(rand_int, 4)) == false
@test trunc(Rational(BigInt(rand_int), BigInt(3))) == Rational(trunc(BigInt, Rational(BigInt(rand_int),BigInt(3))))
@test ceil(Rational(BigInt(rand_int), BigInt(3))) == Rational( ceil(BigInt, Rational(BigInt(rand_int),BigInt(3))))
@test round(Rational(BigInt(rand_int), BigInt(3))) == Rational(round(BigInt, Rational(BigInt(rand_int),BigInt(3))))
for a = -3:3
@test Rational(Float32(a)) == Rational(a)
@test Rational(a)//2 == a//2
@test a//Rational(2) == Rational(a/2)
@test a.//[-2, -1, 1, 2] == [-a//2, -a//1, a//1, a//2]
for b=-3:3, c=1:3
@test b//(a+c*im) == b*a//(a^2+c^2)-(b*c//(a^2+c^2))*im
for d=-3:3
@test (a+b*im)//(c+d*im) == (a*c+b*d+(b*c-a*d)*im)//(c^2+d^2)
@test Complex(Rational(a)+b*im)//Complex(Rational(c)+d*im) == Complex(a+b*im)//Complex(c+d*im)
end
end
end
end
# check type of constructed rationals
int_types = Base.BitInteger64_types
for N = int_types, D = int_types
T = promote_type(N,D)
@test typeof(convert(N,2)//convert(D,3)) <: Rational{T}
end
# issue #7564
@test typeof(convert(Rational{Integer},1)) === Rational{Integer}
@testset "issue #15205" begin
T = Rational
x = Complex{T}(1//3 + 1//4*im)
y = Complex{T}(1//2 + 1//5*im)
xf = Complex{BigFloat}(1//3 + 1//4*im)
yf = Complex{BigFloat}(1//2 + 1//5*im)
yi = 4
@test x^y ≈ xf^yf
@test x^yi ≈ xf^yi
@test x^true ≈ xf^true
@test x^false == xf^false
@test x^1 ≈ xf^1
@test xf^Rational(2, 1) ≈ xf*xf
@test Complex(1., 1.)^Rational(2,1) == Complex(1., 1.)*Complex(1.,1.) == Complex(0., 2.)
for Tf = (Float16, Float32, Float64), Ti = (Int16, Int32, Int64)
almost_half = Rational(div(typemax(Ti),Ti(2)) , typemax(Ti))
over_half = Rational(div(typemax(Ti),Ti(2))+one(Ti), typemax(Ti))
exactly_half = Rational(one(Ti) , Ti(2))
@test round( almost_half) == 0//1
@test round(-almost_half) == 0//1
@test round(Tf, almost_half, RoundNearestTiesUp) == 0.0
@test round(Tf, -almost_half, RoundNearestTiesUp) == 0.0
@test round(Tf, almost_half, RoundNearestTiesAway) == 0.0
@test round(Tf, -almost_half, RoundNearestTiesAway) == 0.0
@test round( exactly_half) == 0//1 # rounds to closest _even_ integer
@test round(-exactly_half) == 0//1 # rounds to closest _even_ integer
@test round(Tf, exactly_half, RoundNearestTiesUp) == 1.0
@test round(Tf, -exactly_half, RoundNearestTiesUp) == 0.0
@test round(Tf, exactly_half, RoundNearestTiesAway) == 1.0
@test round(Tf, -exactly_half, RoundNearestTiesAway) == -1.0
@test round(over_half) == 1//1
@test round(-over_half) == -1//1
@test round(Tf, over_half, RoundNearestTiesUp) == 1.0
@test round(Tf, over_half, RoundNearestTiesAway) == 1.0
@test round(Tf, -over_half, RoundNearestTiesUp) == -1.0
@test round(Tf, -over_half, RoundNearestTiesAway) == -1.0
@test round(Tf, 11//2, RoundNearestTiesUp) == 6.0
@test round(Tf, -11//2, RoundNearestTiesUp) == -5.0
@test round(Tf, 11//2, RoundNearestTiesAway) == 6.0
@test round(Tf, -11//2, RoundNearestTiesAway) == -6.0
@test round(Tf, Ti(-1)//zero(Ti)) == -Inf
@test round(Tf, one(1)//zero(Ti)) == Inf
@test round(Tf, Ti(-1)//zero(Ti), RoundNearestTiesUp) == -Inf
@test round(Tf, one(1)//zero(Ti), RoundNearestTiesUp) == Inf
@test round(Tf, Ti(-1)//zero(Ti), RoundNearestTiesAway) == -Inf
@test round(Tf, one(1)//zero(Ti), RoundNearestTiesAway) == Inf
@test round(Tf, zero(Ti)//one(Ti)) == 0
@test round(Tf, zero(Ti)//one(Ti), RoundNearestTiesUp) == 0
@test round(Tf, zero(Ti)//one(Ti), RoundNearestTiesAway) == 0
end
end
@testset "show and Rationals" begin
io = IOBuffer()
rational1 = Rational(1465, 8593)
rational2 = Rational(-4500, 9000)
@test sprint(show, rational1) == "1465//8593"
@test sprint(show, rational2) == "-1//2"
let
io1 = IOBuffer()
write(io1, rational1)
io1.ptr = 1
@test read(io1, typeof(rational1)) == rational1
io2 = IOBuffer()
write(io2, rational2)
io2.ptr = 1
@test read(io2, typeof(rational2)) == rational2
end
end
@testset "round" begin
@test round(11//2) == 6//1 # rounds to closest _even_ integer
@test round(-11//2) == -6//1 # rounds to closest _even_ integer
@test round(11//3) == 4//1 # rounds to closest _even_ integer
@test round(-11//3) == -4//1 # rounds to closest _even_ integer
for T in (Float16, Float32, Float64)
@test round(T, true//false) === convert(T, Inf)
@test round(T, true//true) === one(T)
@test round(T, false//true) === zero(T)
end
for T in (Int8, Int16, Int32, Int64, Bool)
@test_throws DivideError round(T, true//false)
@test round(T, true//true) === one(T)
@test round(T, false//true) === zero(T)
end
end
@testset "issue 1552" begin
@test isa(rationalize(Int8, float(pi)), Rational{Int8})
@test rationalize(Int8, float(pi)) == 22//7
@test rationalize(Int64, 0.957762604052997) == 42499549//44373782
@test rationalize(Int16, 0.929261477046077) == 11639//12525
@test rationalize(Int16, 0.2264705884044309) == 77//340
@test rationalize(Int16, 0.39999899264235683) == 2//5
@test rationalize(Int16, 1.1264233500618559e-5) == 0//1
@test rationalize(UInt16, 0.6666652791223875) == 2//3
@test rationalize(Int8, 0.9374813124660655) == 15//16
@test rationalize(Int8, 0.003803032342443835) == 0//1
end
# issue 3412
@test convert(Rational{Int32},0.5) === Int32(1)//Int32(2)
@testset "issue 6712" begin
@test convert(Rational{BigInt},Float64(pi)) == Float64(pi)
@test convert(Rational{BigInt},big(pi)) == big(pi)
@test convert(Rational,0.0) == 0
@test convert(Rational,-0.0) == 0
@test convert(Rational,zero(BigFloat)) == 0
@test convert(Rational,-zero(BigFloat)) == 0
@test convert(Rational{BigInt},0.0) == 0
@test convert(Rational{BigInt},-0.0) == 0
@test convert(Rational{BigInt},zero(BigFloat)) == 0
@test convert(Rational{BigInt},-zero(BigFloat)) == 0
@test convert(Rational{BigInt},5e-324) == 5e-324
@test convert(Rational{BigInt},floatmin(Float64)) == floatmin(Float64)
@test convert(Rational{BigInt},floatmax(Float64)) == floatmax(Float64)
@test isa(convert(Float64, big(1)//2), Float64)
end
@testset "issue 16513" begin
@test convert(Rational{Int32}, pi) == 1068966896 // 340262731
@test convert(Rational{Int64}, pi) == 2646693125139304345 // 842468587426513207
@test convert(Rational{Int128}, pi) == 60728338969805745700507212595448411044 // 19330430665609526556707216376512714945
@test_throws ArgumentError convert(Rational{BigInt}, pi)
end
@testset "issue 5935" begin
@test rationalize(Int8, nextfloat(0.1)) == 1//10
@test rationalize(Int64, nextfloat(0.1)) == 300239975158034//3002399751580339
@test rationalize(Int128,nextfloat(0.1)) == 300239975158034//3002399751580339
@test rationalize(BigInt,nextfloat(0.1)) == 300239975158034//3002399751580339
@test rationalize(Int8, nextfloat(0.1),tol=0.5eps(0.1)) == 1//10
@test rationalize(Int64, nextfloat(0.1),tol=0.5eps(0.1)) == 379250494936463//3792504949364629
@test rationalize(Int128,nextfloat(0.1),tol=0.5eps(0.1)) == 379250494936463//3792504949364629
@test rationalize(BigInt,nextfloat(0.1),tol=0.5eps(0.1)) == 379250494936463//3792504949364629
@test rationalize(Int8, nextfloat(0.1),tol=1.5eps(0.1)) == 1//10
@test rationalize(Int64, nextfloat(0.1),tol=1.5eps(0.1)) == 1//10
@test rationalize(Int128,nextfloat(0.1),tol=1.5eps(0.1)) == 1//10
@test rationalize(BigInt,nextfloat(0.1),tol=1.5eps(0.1)) == 1//10
@test rationalize(BigInt,nextfloat(parse(BigFloat,"0.1")),tol=1.5eps(big(0.1))) == 1//10
@test rationalize(Int64, nextfloat(0.1),tol=0) == 7205759403792795//72057594037927936
@test rationalize(Int128,nextfloat(0.1),tol=0) == 7205759403792795//72057594037927936
@test rationalize(BigInt,nextfloat(0.1),tol=0) == 7205759403792795//72057594037927936
@test rationalize(Int8, prevfloat(0.1)) == 1//10
@test rationalize(Int64, prevfloat(0.1)) == 1//10
@test rationalize(Int128,prevfloat(0.1)) == 1//10
@test rationalize(BigInt,prevfloat(0.1)) == 1//10
@test rationalize(BigInt,prevfloat(parse(BigFloat,"0.1"))) == 1//10
@test rationalize(Int64, prevfloat(0.1),tol=0) == 7205759403792793//72057594037927936
@test rationalize(Int128,prevfloat(0.1),tol=0) == 7205759403792793//72057594037927936
@test rationalize(BigInt,prevfloat(0.1),tol=0) == 7205759403792793//72057594037927936
@test rationalize(BigInt,nextfloat(parse(BigFloat,"0.1")),tol=0) == 46316835694926478169428394003475163141307993866256225615783033603165251855975//463168356949264781694283940034751631413079938662562256157830336031652518559744
@test rationalize(Int8, 200f0) == 1//0
@test rationalize(Int8, -200f0) == -1//0
@test [rationalize(1pi,tol=0.1^n) for n=1:10] == [
16//5
22//7
201//64
333//106
355//113
355//113
75948//24175
100798//32085
103993//33102
312689//99532 ]
end
@testset "issue #12536" begin
@test Rational{Int16}(1,2) === Rational(Int16(1),Int16(2))
@test Rational{Int16}(500000,1000000) === Rational(Int16(1),Int16(2))
end
# issue 16311
rationalize(nextfloat(0.0)) == 0//1
@testset "rational-exponent promotion rules (issue #3155)" begin
@test 2.0f0^(1//3) == 2.0f0^(1.0f0/3)
@test 2^(1//3) == 2^(1/3)
end
@testset "overflow in rational comparison" begin
@test 3//2 < typemax(Int)
@test 3//2 <= typemax(Int)
end
# issue #15920
@test Rational(0, 1) / Complex(3, 2) == 0
# issue #16282
@test_throws MethodError 3 // 4.5im
# issue #31396
@test round(1//2, RoundNearestTiesUp) === 1//1
@testset "Unary plus on Rational (issue #30749)" begin
@test +Rational(true) == 1//1
@test +Rational(false) == 0//1
@test -Rational(true) == -1//1
@test -Rational(false) == 0//1
end