This project implemented a complete RLHF training process from scratch, mainly for personal learning.
pretrained_model=chinese_llama_path
dataset_dir=/root/Chinese-LLaMA-Tuning/sft_data
data_cache_dir=/root/Chinese-LLaMA-Tuning/sft_data/cache/data
lora_trainable="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj"
output_dir=sft_model_path
peft_path=sft_lora_model
modules_to_save=None
torchrun --nnodes 1 --nproc_per_node 1 run_sft_with_peft.py \
--model_type llama \
--model_name_or_path ${pretrained_model} \
--dataset_dir ${dataset_dir} \
--split_ratio 0.01 \
--data_cache_dir ${data_cache_dir} \
--block_size 512 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--dataloader_num_workers 16 \
--gradient_accumulation_steps 8 \
--do_train \
--do_eval \
--seed 512 \
--fp16 \
--num_train_epochs 1 \
--logging_steps 10 \
--eval_steps 100 \
--save_steps 500 \
--learning_rate 1e-4 \
--lr_scheduler_type cosine \
--warmup_ratio 0.03 \
--weight_decay 0 \
--logging_strategy steps \
--save_strategy steps \
--evaluation_strategy steps \
--save_total_limit 1 \
--output_dir ${output_dir} \
--overwrite_output_dir \
--ddp_timeout 30000 \
--logging_first_step True \
--lora_rank 8 \
--lora_alpha 32 \
--lora_target ${lora_trainable} \
--lora_dropout 0.05 \
--modules_to_save ${modules_to_save} \
--torch_dtype float16 \
--report_to "wandb"
pretrained_model=chinese_alpaca_path
dataset_dir=/root/Chinese-LLaMA-Tuning/rm_data
data_cache_dir=/root/Chinese-LLaMA-Tuning/rm_data/cache/data
lora_trainable="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj"
output_dir=rm_lora_path
torchrun --nnodes 1 --nproc_per_node 1 run_rm_with_peft.py \
--model_type llama \
--model_name_or_path ${pretrained_model} \
--dataset_dir ${dataset_dir} \
--split_ratio 0.01 \
--data_cache_dir ${data_cache_dir} \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--dataloader_num_workers 16 \
--gradient_accumulation_steps 8 \
--do_train \
--do_eval \
--seed 512 \
--fp16 \
--num_train_epochs 1 \
--max_length 1024 \
--learning_rate 1e-5 \
--warmup_ratio 0.05 \
--weight_decay 0.01 \
--logging_strategy steps \
--evaluation_strategy steps \
--logging_steps 10 \
--save_strategy steps \
--save_total_limit 1 \
--eval_steps 10 \
--save_steps 10 \
--block_size 512 \
--output_dir ${output_dir} \
--overwrite_output_dir \
--logging_first_step True \
--lora_rank 8 \
--lora_alpha 32 \
--lora_target ${lora_trainable} \
--lora_dropout 0.05 \
--torch_dtype float16 \
--report_to "wandb"
sft_model_path=chinese_alpaca_path
reward_lora_path=rm_lora_path
actor_peft_path=output_dir_rlhf_actor
critic_peft_path=output_dir_rlhf_critic
dataset_dir=/root/Chinese-LLaMA-Tuning/sft_data
pretrain_dataset_dir=/root/Chinese-LLaMA-Tuning/pt_data
actor_lora_trainable="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj"
critic_lora_trainable="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj"
actor_output_dir=output_dir_rlhf_actor
critic_output_dir=output_dir_rlhf_critic
accelerate launch --config_file default_config.yaml run_ppo_with_peft.py \
--model_type llama \
--sft_model_path ${sft_model_path} \
--reward_lora_path ${reward_lora_path} \
--dataset_dir ${dataset_dir} \
--pretrain_dataset_dir ${pretrain_dataset_dir} \
--per_device_train_batch_size 2 \
--per_device_mini_train_batch_size 2 \
--gradient_accumulation_steps 2 \
--do_train \
--num_train_epochs 1 \
--seed 512 \
--lr_scheduler_type cosine \
--actor_lr 1e-4 \
--critic_lr 1e-4 \
--logging_steps 10 \
--save_steps 10 \
--dataloader_num_workers 16 \
--output_dir ${actor_output_dir} \
--critic_output_dir ${critic_output_dir} \
--actor_lora_rank 8 \
--actor_lora_alpha 32 \
--actor_lora_target ${actor_lora_trainable} \
--actor_lora_dropout 0.05 \
--critic_lora_rank 8 \
--critic_lora_alpha 32 \
--critic_lora_target ${critic_lora_trainable} \
--critic_lora_dropout 0.05 \
--max_prompt_length 256 \
--max_response_length 256 \
--ppo_epochs 1 \
--gamma 1 \
--lam 0.95 \
--kl_penalty_beta 0.02 \
--reward_score_clip 10 \
--value_clip 0.2 \
--ratio_clip 0.2 \
--actor_loss_weight 1 \
--critic_loss_weight 2 \
--pretrain_loss_weight 0.1 \
--pretrain_warmup_steps 500 \
--report_to "wandb" \
--torch_dtype float16 \
--fp16