Skip to content

Application of K-Anonymity, L-Diversity, T-Closeness on numerical or categorial Data.

License

Notifications You must be signed in to change notification settings

JonasGreim/data-privacy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

K-Anonymity, L-Diversity, T-Closeness on numerical or categorial Data

Look into this jupyther notebook data-privacy-methods.ipynb -> results are pre-rendered

own setup

  • install conda
  • conda create --name myenv python=3.7
  • conda activate myenv
  • conda install pandas==0.25
  • conda install matplotlib

  • set the python interpreter/kernel = myenv in your favourite IDE (in which should run jupyter notebook)
  • run the jupyter notebook

  • change privacy methods parameter (kAnonym, lDivers, tClose)
  • you can choose if your numeric data partitions should be displayed as a range or as an average
  • categorial data are always displayed as unique sets

You can also add another display function like suppression

  • in "Enter dataset & privacy parameters"
    • add dataColumnDisplayedDifferently = set(('YourChosenColumn',))
  • in the "Generating anonymous Dataset" section:
    • add your custom function there
  • in build_anonymized_dataset() function:
    • add an ifel condition for your dataColumnDisplayedDifferently set

About

Application of K-Anonymity, L-Diversity, T-Closeness on numerical or categorial Data.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published