Skip to content

Latest commit

 

History

History

skull-reconstruction

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Skull reconstruction: restoring the full skull when facial bones, cranium, etc are damaged

Overview

Title: Automatic Skull Reconstruction
Link to paper: Paper
Paper
Benchmark: Skull Reconstruction
Link to benchmark dataset: Download (facial training and test)
Download (cranial training)
Download (cranial test 1)
Download (cranial test 2)
Download (cranial test 3 (craniotomy))
Data structure: voxel occupancy grid

datacreation

Data Creation: Remove (part of) facial bones or cranium from healthy skulls

Methods: Use U-Net style networks that take partial skulls as input and the original skulls as the ground truth

Bibtex

@article{li2021autoimplant,
  title={AutoImplant 2020-first MICCAI challenge on automatic cranial implant design},
  author={Li, Jianning and Pimentel, Pedro and Szengel, Angelika and Ehlke, Moritz and Lamecker, Hans and Zachow, Stefan and Estacio, Laura and Doenitz, Christian and Ramm, Heiko and Shi, Haochen and others},
  journal={IEEE transactions on medical imaging},
  volume={40},
  number={9},
  pages={2329--2342},
  year={2021},
  publisher={IEEE}
}

@article{li2023towards,
  title={Towards clinical applicability and computational efficiency in automatic cranial implant design: An overview of the AutoImplant 2021 cranial implant design challenge},
  author={Li, Jianning and Ellis, David G and Kodym, Old{\v{r}}ich and Rauschenbach, Laur{\`e}l and Rie{\ss}, Christoph and Sure, Ulrich and Wrede, Karsten H and Alvarez, Carlos M and Wodzinski, Marek and Daniol, Mateusz and others},
  journal={Medical Image Analysis},
  pages={102865},
  year={2023},
  publisher={Elsevier}
}

@inproceedings{li2022training,
  title={Training $\beta$-VAE by aggregating a learned Gaussian posterior with a decoupled decoder},
  author={Li, Jianning and Fragemann, Jana and Ahmadi, Seyed-Ahmad and Kleesiek, Jens and Egger, Jan},
  booktitle={MICCAI Workshop on Medical Applications with Disentanglements},
  pages={70--92},
  year={2022},
  organization={Springer}
}

@article{li2020baseline,
  title={MedShapeNet - A Large-Scale Dataset of 3D Medical Shapes for Computer Vision},
  author={Li, Jianning and Pepe, Antonio and Gsaxner, Christina and others},
  journal={arXiv preprint arXiv:2308.16139},
  year={2023}
}