-
Notifications
You must be signed in to change notification settings - Fork 483
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Bench] Fix arbitrary evaluation nonsense (#5867)
This unscrews another portion of benchmarks. We still have benchmarks that are screwed up (see [PLT-6541](https://input-output.atlassian.net/browse/PLT-6541)) See [this](#4914 (comment)) comment for an explanation of what went wrong.
- Loading branch information
1 parent
4412a30
commit 56d6d7f
Showing
10 changed files
with
128 additions
and
92 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,14 @@ | ||
{-# LANGUAGE BangPatterns #-} | ||
|
||
{- | Plutus benchmarks for the CEK machine based on some nofib examples. -} | ||
module Main where | ||
|
||
import PlutusBenchmark.Common (benchTermCek) | ||
import Shared (benchWith) | ||
import Shared (benchTermCek, benchWith, mkEvalCtx) | ||
|
||
import Control.DeepSeq (force) | ||
import Control.Exception (evaluate) | ||
|
||
main :: IO () | ||
main = benchWith benchTermCek | ||
main = do | ||
evalCtx <- evaluate $ force mkEvalCtx | ||
benchWith $ benchTermCek evalCtx |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
56d6d7f
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Possible performance regression was detected for benchmark 'Plutus Benchmarks'.
Benchmark result of this commit is worse than the previous benchmark result exceeding threshold
1.05
.validation-stablecoin_1-4
201.8
μs192
μs1.05
validation-stablecoin_2-4
202.5
μs192.8
μs1.05
nofib-clausify/formula1
3939
μs3749
μs1.05
nofib-clausify/formula3
14140
μs13430
μs1.05
nofib-clausify/formula4
29480
μs27710
μs1.06
nofib-clausify/formula5
68370
μs64790.00000000001
μs1.06
nofib-knights/4x4
18980
μs17930
μs1.06
nofib-knights/6x6
50000
μs46440
μs1.08
nofib-knights/8x8
87960
μs81150
μs1.08
nofib-primetest/05digits
10110
μs8824
μs1.15
nofib-primetest/08digits
16290
μs14150
μs1.15
nofib-primetest/10digits
19530
μs17090
μs1.14
nofib-primetest/20digits
38500
μs34080
μs1.13
nofib-primetest/30digits
59050
μs51750
μs1.14
nofib-primetest/40digits
79570
μs70270
μs1.13
nofib-primetest/50digits
97280
μs85740
μs1.13
nofib-queens4x4/bt
5852
μs5467
μs1.07
nofib-queens4x4/bm
7553
μs7176
μs1.05
nofib-queens4x4/bjbt1
7184
μs6749
μs1.06
nofib-queens4x4/bjbt2
6678
μs6259
μs1.07
nofib-queens4x4/fc
15490
μs14730
μs1.05
nofib-queens5x5/bt
78440
μs73120
μs1.07
nofib-queens5x5/bjbt1
92030
μs86320
μs1.07
nofib-queens5x5/bjbt2
89030
μs83260
μs1.07
nofib-queens5x5/fc
196100
μs186400
μs1.05
marlowe-semantics/ffdd68a33afd86f8844c9f5e45b2bda5b035aa02274161b23d57709c0f8b8de6
1114
μs879.6
μs1.27
marlowe-semantics/f2a8fd2014922f0d8e01541205d47e9bb2d4e54333bdd408cbe7c47c55e73ae4
905.1
μs659.7
μs1.37
marlowe-semantics/ecb5e8308b57724e0f8533921693f111eba942123cf8660aac2b5bac21ec28f0
792
μs603.5
μs1.31
marlowe-semantics/eb4a605ed3a64961e9e66ad9631c2813dadf7131740212762ae4483ec749fe1d
370.1
μs272
μs1.36
marlowe-semantics/e9234d2671760874f3f660aae5d3416d18ce6dfd7af4231bdd41b9ec268bc7e1
1077
μs872.8
μs1.23
marlowe-semantics/e3afd22d01ff12f381cf915fd32358634e6c413f979f2492cf3339319d8cc079
369.1
μs276
μs1.34
marlowe-semantics/e34b48f80d49360e88c612f4016f7d68cb5678dd8cd5ddb981375a028b3a40a5
473.2
μs358.1
μs1.32
marlowe-semantics/e26c1cddba16e05fd10c34cbdb16ea6acdbac7c8323256c31c90c520ee6a1080
440.7
μs346.4
μs1.27
marlowe-semantics/dd11ae574eaeab0e9925319768989313a93913fdc347c704ddaa27042757d990
896.4
μs699.7
μs1.28
marlowe-semantics/dc241ac6ad1e04fb056d555d6a4f2d08a45d054c6f7f34355fcfeefebef479f3
565.4
μs425.2
μs1.33
marlowe-semantics/d64607eb8a1448595081547ea8780886fcbd9e06036460eea3705c88ea867e33
370.6
μs272.3
μs1.36
marlowe-semantics/d1c03759810747b7cab38c4296593b38567e11195d161b5bb0a2b58f89b2c65a
1213
μs936.6
μs1.30
marlowe-semantics/cf542b7df466b228ca2197c2aaa89238a8122f3330fe5b77b3222f570395d9f5
599.7
μs449.7
μs1.33
marlowe-semantics/ced1ea04649e093a501e43f8568ac3e6b37cd3eccec8cac9c70a4857b88a5eb8
989.6
μs775.5
μs1.28
marlowe-semantics/cdb9d5c233b288a5a9dcfbd8d5c1831a0bb46eec7a26fa31b80ae69d44805efc
1035
μs811.3
μs1.28
marlowe-semantics/ccab11ce1a8774135d0e3c9e635631b68af9e276b5dabc66ff669d5650d0be1c
1044
μs932.6
μs1.12
marlowe-semantics/c9efcb705ee057791f7c18a1de79c49f6e40ba143ce0579f1602fd780cabf153
966.7
μs750.8
μs1.29
marlowe-semantics/c4bb185380df6e9b66fc1ee0564f09a8d1253a51a0c0c7890f2214df9ac19274
889.8
μs675.1
μs1.32
marlowe-semantics/bb5345bfbbc460af84e784b900ec270df1948bb1d1e29eacecd022eeb168b315
1137
μs891.7
μs1.28
marlowe-semantics/b50170cea48ee84b80558c02b15c6df52faf884e504d2c410ad63ba46d8ca35c
899.8
μs709.7
μs1.27
marlowe-semantics/b21a4df3b0266ad3481a26d3e3d848aad2fcde89510b29cccce81971e38e0835
1594
μs1242
μs1.28
marlowe-semantics/ad6db94ed69b7161c7604568f44358e1cc11e81fea90e41afebd669e51bb60c8
705.2
μs539.3
μs1.31
marlowe-semantics/acce04815e8fd51be93322888250060da173eccf3df3a605bd6bc6a456cde871
356.3
μs245.1
μs1.45
marlowe-semantics/acb9c83c2b78dabef8674319ad69ba54912cd9997bdf2d8b2998c6bfeef3b122
776.3
μs605.1
μs1.28
marlowe-semantics/a9a853b6d083551f4ed2995551af287880ef42aee239a2d9bc5314d127cce592
620.4
μs446.7
μs1.39
marlowe-semantics/a85173a832db3ea944fafc406dfe3fa3235254897d6d1d0e21bc380147687bd5
456.1
μs330.9
μs1.38
marlowe-semantics/9fabc4fc3440cdb776b28c9bb1dd49c9a5b1605fe1490aa3f4f64a3fa8881b25
1277
μs921.7
μs1.39
marlowe-semantics/96e1a2fa3ceb9a402f2a5841a0b645f87b4e8e75beb636692478ec39f74ee221
371.9
μs276.2
μs1.35
marlowe-semantics/8d9ae67656a2911ab15a8e5301c960c69aa2517055197aff6b60a87ff718d66c
432.1
μs334.5
μs1.29
marlowe-semantics/8c7fdc3da6822b5112074380003524f50fb3a1ce6db4e501df1086773c6c0201
1359
μs1067
μs1.27
marlowe-semantics/82213dfdb6a812b40446438767c61a388d2c0cfd0cbf7fd4a372b0dc59fa17e1
1537
μs1125
μs1.37
marlowe-semantics/7cbc5644b745f4ea635aca42cce5e4a4b9d2e61afdb3ac18128e1688c07071ba
561
μs445.2
μs1.26
marlowe-semantics/7a758e17486d1a30462c32a5d5309bd1e98322a9dcbe277c143ed3aede9d265f
619.5
μs448.1
μs1.38
marlowe-semantics/75a8bb183688bce447e00f435a144c835435e40a5defc6f3b9be68b70b4a3db6
840.7
μs631
μs1.33
marlowe-semantics/7529b206a78becb793da74b78c04d9d33a2540a1abd79718e681228f4057403a
950.6
μs736.8
μs1.29
marlowe-semantics/74c67f2f182b9a0a66c62b95d6fac5ace3f7e71ea3abfc52ffbe3ecb93436ea2
948.1
μs730
μs1.30
marlowe-semantics/71965c9ccae31f1ffc1d85aa20a356d4ed97a420954018d8301ec4f9783be0d7
580.4
μs434.3
μs1.34
marlowe-semantics/70f65b21b77ddb451f3df9d9fb403ced3d10e1e953867cc4900cc25e5b9dec47
939.8
μs708.8
μs1.33
marlowe-semantics/6d88f7294dd2b5ce02c3dc609bc7715bd508009738401d264bf9b3eb7c6f49c1
593.8
μs451.7
μs1.31
marlowe-semantics/67ba5a9a0245ee3aff4f34852b9889b8c810fccd3dce2a23910bddd35c503b71
5837
μs5303
μs1.10
marlowe-semantics/675d63836cad11b547d1b4cddd498f04c919d4342612accf40913f9ae9419fac
1232
μs947.5
μs1.30
marlowe-semantics/66af9e473d75e3f464971f6879cc0f2ef84bafcb38fbfa1dbc31ac2053628a38
1507
μs1085
μs1.39
marlowe-semantics/65bc4b69b46d18fdff0fadbf00dd5ec2b3e03805fac9d5fb4ff2d3066e53fc7e
2464
μs2210
μs1.11
marlowe-semantics/64c3d5b43f005855ffc4d0950a02fd159aa1575294ea39061b81a194ebb9eaae
793.7
μs612.2
μs1.30
marlowe-semantics/5f3d46c57a56cef6764f96c9de9677ac6e494dd7a4e368d1c8dd9c1f7a4309a5
595.7
μs450.5
μs1.32
marlowe-semantics/5f306b4b24ff2b39dab6cdc9ac6ca9bb442c1dc6f4e7e412eeb5a3ced42fb642
907.9
μs696.7
μs1.30
marlowe-semantics/5f130d19918807b60eab4c03119d67878fb6c6712c28c54f5a25792049294acc
369.8
μs276.6
μs1.34
marlowe-semantics/5e2c68ac9f62580d626636679679b97109109df7ac1a8ce86d3e43dfb5e4f6bc
626.5
μs474.3
μs1.32
marlowe-semantics/5e274e0f593511543d41570a4b03646c1d7539062b5728182e073e5760561a66
1206
μs925.8
μs1.30
marlowe-semantics/5d0a88250f13c49c20e146819357a808911c878a0e0a7d6f7fe1d4a619e06112
1258
μs926.2
μs1.36
marlowe-semantics/5abae75af26f45658beccbe48f7c88e74efdfc0b8409ba1e98f95fa5b6caf999
590.4
μs444.9
μs1.33
marlowe-semantics/57728d8b19b0e06412786f3dfed9e1894cd0ad1d2bc2bd497ec0ecb68f989d2b
371.3
μs272
μs1.37
marlowe-semantics/56333d4e413dbf1a665463bf68067f63c118f38f7539b7ba7167d577c0c8b8ce
919
μs718.4
μs1.28
marlowe-semantics/55dfe42688ad683b638df1fa7700219f00f53b335a85a2825502ab1e0687197e
371.3
μs271.9
μs1.37
marlowe-semantics/53ed4db7ab33d6f907eec91a861d1188269be5ae1892d07ee71161bfb55a7cb7
457.6
μs331.1
μs1.38
marlowe-semantics/52df7c8dfaa5f801cd837faa65f2fd333665fff00a555ce8c55e36ddc003007a
447.1
μs325.9
μs1.37
marlowe-semantics/4f9e8d361b85e62db2350dd3ae77463540e7af0d28e1eb68faeecc45f4655f57
474.8
μs371.1
μs1.28
marlowe-semantics/4d7adf91bfc93cebe95a7e054ec17cfbb912b32bd8aecb48a228b50e02b055c8
843.6
μs632.6
μs1.33
marlowe-semantics/4c3efd13b6c69112a8a888372d56c86e60c232125976f29b1c3e21d9f537845c
1218
μs938.6
μs1.30
marlowe-semantics/44a9e339fa25948b48637fe7e10dcfc6d1256319a7b5ce4202cb54dfef8e37e7
370.7
μs271.7
μs1.36
marlowe-semantics/3db496e6cd39a8b888a89d0de07dace4397878958cab3b9d9353978b08c36d8a
1002
μs742.3
μs1.35
marlowe-semantics/3bb75b2e53eb13f718eacd3263ab4535f9137fabffc9de499a0de7cabb335479
371
μs271.7
μs1.37
marlowe-semantics/383683bfcecdab0f4df507f59631c702bd11a81ca3841f47f37633e8aacbb5de
910.2
μs699.1
μs1.30
marlowe-semantics/33c3efd79d9234a78262b52bc6bbf8124cb321a467dedb278328215167eca455
746.8
μs578.5
μs1.29
marlowe-semantics/331e4a1bb30f28d7073c54f9a13c10ae19e2e396c299a0ce101ee6bf4b2020db
561.9
μs422.6
μs1.33
marlowe-semantics/322acde099bc34a929182d5b894214fc87ec88446e2d10625119a9d17fa3ec3d
369.6
μs276.2
μs1.34
marlowe-semantics/30aa34dfbe89e0c43f569929a96c0d2b74c321d13fec0375606325eee9a34a6a
1353
μs1064
μs1.27
marlowe-semantics/2f58c9d884813042bce9cf7c66048767dff166785e8b5183c8139db2aa7312d1
898.8
μs707.7
μs1.27
marlowe-semantics/2cb21612178a2d9336b59d06cbf80488577463d209a453048a66c6eee624a695
946.7
μs708.2
μs1.34
marlowe-semantics/28fdce478e179db0e38fb5f3f4105e940ece450b9ce8a0f42a6e313b752e6f2c
1103
μs818.5
μs1.35
marlowe-semantics/2797d7ac77c1b6aff8e42cf9a47fa86b1e60f22719a996871ad412cbe4de78b5
1905
μs1701
μs1.12
marlowe-semantics/26e24ee631a6d927ea4fb4fac530cfd82ff7636986014de2d2aaa460ddde0bc3
668.8
μs520.2
μs1.29
marlowe-semantics/238b21364ab5bdae3ddb514d7001c8feba128b4ddcf426852b441f9a9d02c882
371.2
μs271.9
μs1.37
marlowe-semantics/21953bf8798b28df60cb459db24843fb46782b19ba72dc4951941fb4c20d2263
432.2
μs332.3
μs1.30
marlowe-semantics/202d273721330b31193405101e0637202e2a0f1140211c3e3f171e26312b0220
5833
μs5494
μs1.06
marlowe-semantics/1f0f02191604101e1f201016171604060d010d1d1c150e110a110e1006160a0d
1062
μs936.5
μs1.13
marlowe-semantics/1d6e3c137149a440f35e0efc685b16bfb8052ebcf66ec4ad77e51c11501381c7
370.7
μs276
μs1.34
marlowe-semantics/1d56060c3b271226064c672a282663643b1b0823471c67737f0b076870331260
928.8
μs705.1
μs1.32
marlowe-semantics/1a573aed5c46d637919ccb5548dfc22a55c9fc38298d567d15ee9f2eea69d89e
1056
μs831.8
μs1.27
marlowe-semantics/1a2f2540121f09321216090b2b1f211e3f020c2c133a1a3c3f3c232a26153a04
370
μs276.3
μs1.34
marlowe-semantics/18cefc240debc0fcab14efdd451adfd02793093efe7bc76d6322aed6ddb582ad
899.6
μs680.5
μs1.32
marlowe-semantics/12910f24d994d451ff379b12c9d1ecdb9239c9b87e5d7bea570087ec506935d5
602.8
μs449.1
μs1.34
marlowe-semantics/119fbea4164e2bf21d2b53aa6c2c4e79414fe55e4096f5ce2e804735a7fbaf91
914.7
μs681.4
μs1.34
marlowe-semantics/0f1d0110001b121d051e15140c0c05141d151c1f1d201c040f10091b020a0e1a
574.1
μs434
μs1.32
marlowe-semantics/0be82588e4e4bf2ef428d2f44b7687bbb703031d8de696d90ec789e70d6bc1d8
1613
μs1253
μs1.29
marlowe-semantics/0bcfd9487614104ec48de2ea0b2c0979866a95115748c026f9ec129384c262c4
1354
μs1020
μs1.33
marlowe-semantics/07070c070510030509010e050d00040907050e0a0d06030f1006030701020607
1210
μs930.4
μs1.30
marlowe-semantics/0705030002040601010206030604080208020207000101060706050502040301
1240
μs869
μs1.43
marlowe-semantics/0543a00ba1f63076c1db6bf94c6ff13ae7d266dd7544678743890b0e8e1add63
1270
μs912
μs1.39
marlowe-semantics/04000f0b04051006000e060f09080d0b090d0104050a0b0f0506070f0a070008
889.6
μs670.7
μs1.33
marlowe-semantics/0104010200020000040103020102020004040300030304040400010301040303
934.9
μs701.7
μs1.33
marlowe-semantics/0101080808040600020306010000000302050807010208060100070207080202
913.2
μs705
μs1.30
marlowe-semantics/0101020201010201010200010102000201000201010102000102010201010000
371.1
μs271.9
μs1.36
marlowe-semantics/0101010001010101010101000100010100000001010000010001000001000101
1028
μs847.6
μs1.21
marlowe-semantics/004025fd712d6c325ffa12c16d157064192992faf62e0b991d7310a2f91666b8
963.5
μs726.9
μs1.33
marlowe-semantics/0003040402030103010203030303000200000104030002040304020400000102
1214
μs954.1
μs1.27
marlowe-semantics/0001000101000000010101000001000001010101010100000001000001010000
522.7
μs411.5
μs1.27
marlowe-semantics/0000020002010200020101020201000100010001020101020201010000020102
392.8
μs290.3
μs1.35
marlowe-role-payout/ff38b1ec89952d0247630f107a90cbbeb92ecbfcd19b284f60255718e4ec7548
248.3
μs174.2
μs1.43
marlowe-role-payout/fc8c5f45ffcdb024c21e0f34b22c23de8045a94d5e1a5bda1555c45ddb059f82
220.3
μs149.3
μs1.48
marlowe-role-payout/f7275afb60e33a550df13a132102e7e925dd28965a4efbe510a89b077ff9417f
211.3
μs144.2
μs1.47
marlowe-role-payout/f53e8cafe26647ccce51e4c31db13608aea1f39034c0f52dee2e5634ef66e747
228
μs159.2
μs1.43
marlowe-role-payout/f2932e4ca4bbb94b0a9ffbe95fcb7bd5639d9751d75d56d5e14efa5bbed981df
207.2
μs141
μs1.47
marlowe-role-payout/f1a1e6a487f91feca5606f72bbb1e948c71abf043c6a0ea83bfea9ec6a0f08d8
210.4
μs143.6
μs1.47
marlowe-role-payout/ee3962fbd7373360f46decef3c9bda536a0b1daf6cda3b8a4bcfd6deeb5b4c53
241.2
μs167.3
μs1.44
marlowe-role-payout/ec4712ee820eb959a43ebedfab6735f2325fa52994747526ffd2a4f4f84dd58e
238.5
μs165.6
μs1.44
marlowe-role-payout/eabeeae18131af89fa57936c0e9eb8d2c7adba534f7e1a517d75410028fa0d6c
211.8
μs143.8
μs1.47
marlowe-role-payout/df487b2fd5c1583fa33644423849bc1ab5f02f37edc0c235f34ef01cb12604f6
218.4
μs149.8
μs1.46
marlowe-role-payout/dc45c5f1b700b1334db99f50823321daaef0e6925b9b2fabbc9df7cde65af62e
220
μs149
μs1.48
marlowe-role-payout/da353bf9219801fa1bf703fc161497570954e9af7e10ffe95c911a9ef97e77bd
218.7
μs148.5
μs1.47
marlowe-role-payout/d6bc8ac4155e22300085784148bbc9d9bbfea896e1009dd396610a90e3943032
240.2
μs167.3
μs1.44
marlowe-role-payout/d5cda74eb0947e025e02fb8ed365df39d0a43e4b42cd3573ac2d8fcb29115997
230.8
μs160.4
μs1.44
marlowe-role-payout/cc1e82927f6c65b3e912200ae30588793d2066e1d4a6627c21955944ac9bd528
238.5
μs165.9
μs1.44
marlowe-role-payout/cb2ab8e22d1f64e8d204dece092e90e9bf1fa8b2a6e9cba5012dbe4978065832
211.6
μs143.9
μs1.47
marlowe-role-payout/caa409c40e39aed9b0f59214b4baa178c375526dea6026b4552b88d2cc729716
203.2
μs135.3
μs1.50
marlowe-role-payout/c99ecc2146ce2066ba6dffc734923264f8794815acbc2ec74c2c2c42ba272e4d
254.8
μs183.9
μs1.39
marlowe-role-payout/c78eeba7681d2ab51b4758efa4c812cc041928837c6e7563d8283cce67ce2e02
226.7
μs155.7
μs1.46
marlowe-role-payout/c4d4c88c5fe378a25a034025994a0d0b1642f10c8e6e513f872327fa895bfc7e
225.5
μs157.3
μs1.43
marlowe-role-payout/c11490431db3a92efdda70933ba411a0423935e73a75c856e326dbcf6672f3bf
211
μs144.6
μs1.46
marlowe-role-payout/bd79f4a84db23b7c4cd219d498bd581e085cbc3437957e74a8862281a700700b
241.9
μs166.7
μs1.45
marlowe-role-payout/bd460b7549b70c52e37b312a4242041eac18fe4a266f018bcea0c78a9085a271
239.6
μs167.7
μs1.43
marlowe-role-payout/bcdbc576d63b0454100ad06893812edafc2e7e4934fec1b44e2d06eb34f36eb8
211.8
μs143.6
μs1.47
marlowe-role-payout/b869f3928200061abb1c3060425b9354b0e08cbf4400b340b8707c14b34317cd
295.5
μs218
μs1.36
marlowe-role-payout/b6243a5b4c353ce4852aa41705111d57867d2783eeef76f6d59beb2360da6e90
276.9
μs200.3
μs1.38
marlowe-role-payout/b43564af5f13cc5208b92b1ad6d45369446f378d3891e5cb3e353b30d4f3fb10
212.5
μs143.7
μs1.48
marlowe-role-payout/af2e072b5adfaa7211e0b341e1f7319c4f4e7364a4247c9247132a927e914753
245.8
μs170.5
μs1.44
marlowe-role-payout/a92b4072cb8601fa697e1150c08463b14ffced54eb963df08d322216e27373cb
212.2
μs143.6
μs1.48
marlowe-role-payout/a7cb09f417c3f089619fe25b7624392026382b458486129efcff18f8912bf302
210.3
μs143.5
μs1.47
marlowe-role-payout/a6f064b83b31032ea7f25921364727224707268e472a569f584cc6b1d8c017e8
212.1
μs143.2
μs1.48
marlowe-role-payout/a6664a2d2a82f370a34a36a45234f6b33120a39372331678a3b3690312560ce9
251
μs181.7
μs1.38
marlowe-role-payout/a27524cfad019df45e4e8316f927346d4cc39da6bdd294fb2c33c3f58e6a8994
210
μs143.1
μs1.47
marlowe-role-payout/a1b25347409c3993feca1a60b6fcaf93d1d4bbaae19ab06fdf50cedc26cee68d
200.8
μs138.4
μs1.45
marlowe-role-payout/a0fba5740174b5cd24036c8b008cb1efde73f1edae097b9325c6117a0ff40d3b
232.8
μs161.7
μs1.44
marlowe-role-payout/a004a989c005d59043f996500e110fa756ad1b85800b889d5815a0106388e1d7
221.9
μs153.3
μs1.45
marlowe-role-payout/996804e90f2c75fe68886fc8511304b8ab9b36785f8858f5cb098e91c159dde9
215.6
μs148.4
μs1.45
marlowe-role-payout/962c2c658b19904372984a56409707401e64e9b03c1986647134cfd329ec5139
228.7
μs156.8
μs1.46
marlowe-role-payout/8c0fa5d9d6724c5c72c67e055d4bfc36a385ded7c3c81c08cdbd8705829af6e6
246.7
μs175.4
μs1.41
marlowe-role-payout/87167fc5469adac97c1be749326fa79a6b7862ce68aa4abcb438e3c034bd0899
247.4
μs175.2
μs1.41
marlowe-role-payout/803eae94d62e2afc0e835c204af8362170301bc329e2d849d5f5a47dddf479ec
235.7
μs166.1
μs1.42
marlowe-role-payout/7b1dd76edc27f00eb382bf996378155baf74d6a7c6f3d5ec837c39d29784aade
212.2
μs144.1
μs1.47
marlowe-role-payout/73f044f34a30f26639c58bafe952047f74c7bf1eafebab5aadf5b73cfb9024ed
210.5
μs143.3
μs1.47
marlowe-role-payout/6d66bddb4269bdf77392d3894da5341cf019d39787522af4f83f01285991e93c
212.1
μs143.5
μs1.48
marlowe-role-payout/6c364699767a84059ffd99cf718562a8c09d96e343f23dc481e8ffda13af424f
210
μs143.4
μs1.46
marlowe-role-payout/6b7bc2b9002a71b33cfd535d43f26334a283d0b9ad189b7cd74baac232c3b9fc
201.6
μs135.6
μs1.49
marlowe-role-payout/674b0577409957172ad85223c765d17e94c27714276c49c38dfae0a47a561a1e
204.2
μs139.6
μs1.46
marlowe-role-payout/6621a69217f09d91f42876a9c0cecf79de0e29bdd5b16c82c6c52cf959092ec4
232.1
μs160.5
μs1.45
marlowe-role-payout/622a7f3bc611b5149253c9189da022a9ff296f60a5b7c172a6dc286faa7284fa
251.3
μs175.8
μs1.43
marlowe-role-payout/5efe992e306e31cc857c64a62436ad2f9325acc5b4a74a8cebccdfd853ce63d2
216.6
μs148.4
μs1.46
marlowe-role-payout/5d4c62a0671c65a14f6a15093e3efc4f1816d95a5a58fd92486bedaae8d9526b
239.6
μs170.1
μs1.41
marlowe-role-payout/5ade103e9530dd0d572fe1b053ea65ad925c6ebbe321e873ace8b804363fa82c
287.3
μs207.3
μs1.39
marlowe-role-payout/5a2aae344e569a2c644dd9fa8c7b1f129850937eb562b7748c275f9e40bed596
209.7
μs142.9
μs1.47
marlowe-role-payout/5a0725d49c733130eda8bc6ed5234f7f6ff8c9dd2d201e8806125e5fbcc081f9
222.3
μs152.7
μs1.46
marlowe-role-payout/4fbcfdb577a56b842d6f6938187a783f71d9da7519353e3da3ef0c564e1eb344
255.2
μs180.9
μs1.41
marlowe-role-payout/4dd7755b6ca1f0c9747c1fc0ee4da799f6f1c07108e980bd9f820911ad711ff2
275
μs194.6
μs1.41
marlowe-role-payout/49b8275d0cb817be40865694ab05e3cfe5fc35fb43b78e7de68c1f3519b536bd
217.6
μs149.2
μs1.46
marlowe-role-payout/47364cfaf2c00f7d633283dce6cf84e4fd4e8228c0a0aa50e7c55f35c3ecaa1c
210.5
μs143.4
μs1.47
marlowe-role-payout/46f8d00030436e4da490a86b331fa6c3251425fb8c19556080e124d75bad7bd6
210.6
μs142.4
μs1.48
marlowe-role-payout/452e17d16222a427707fa83f63ffb79f606cc25c755a18b1e3274c964ed5ec99
254
μs175.2
μs1.45
marlowe-role-payout/4299c7fcf093a5dbfe114c188e32ca199b571a7c25cb7f766bf49f12dab308be
230.4
μs157.4
μs1.46
marlowe-role-payout/4121d88f14387d33ac5e1329618068e3848445cdd66b29e5ba382be2e02a174a
245.1
μs172.1
μs1.42
marlowe-role-payout/3897ef714bba3e6821495b706c75f8d64264c3fdaa58a3826c808b5a768c303d
214.8
μs147.2
μs1.46
marlowe-role-payout/371c10d2526fc0f09dbe9ed59e44dcd949270b27dc42035addd7ff9f7e0d05e7
248.3
μs174.5
μs1.42
marlowe-role-payout/36866914aa07cf62ef36cf2cd64c7f240e3371e27bb9fff5464301678e809c40
207.2
μs140.5
μs1.47
marlowe-role-payout/3569299fc986f5354d02e627a9eaa48ab46d5af52722307a0af72bae87e256dc
207.6
μs141.1
μs1.47
marlowe-role-payout/3565ee025317e065e8555eef288080276716366769aad89e03389f5ec4ce26d7
222.5
μs153.7
μs1.45
marlowe-role-payout/332c2b1c11383d1b373e1315201f1128010e0e1518332f273f141b23243f2a07
200.9
μs139
μs1.45
marlowe-role-payout/224ce46046fab9a17be4197622825f45cc0c59a6bd1604405148e43768c487ef
210.2
μs141.7
μs1.48
marlowe-role-payout/21a1426fb3fb3019d5dc93f210152e90b0a6e740ef509b1cdd423395f010e0ca
231.3
μs160.4
μs1.44
marlowe-role-payout/211e1b6c10260c4620074d2e372c260d38643a3d605f63772524034f0a4a7632
219.9
μs149.7
μs1.47
marlowe-role-payout/1a20b465d48a585ffd622bd8dc26a498a3c12f930ab4feab3a5064cfb3bc536a
228.8
μs158.2
μs1.45
marlowe-role-payout/195f522b596360690d04586a2563470f2214163435331a6622311f7323433f1c
203.4
μs139.9
μs1.45
marlowe-role-payout/159e5a1bf16fe984b5569be7011b61b5e98f5d2839ca7e1b34c7f2afc7ffb58e
211.6
μs143.3
μs1.48
marlowe-role-payout/121a0a1b12030616111f02121a0e070716090a0e031c071419121f141409031d
207.3
μs143
μs1.45
marlowe-role-payout/1138a04a83edc0579053f9ffa9394b41df38230121fbecebee8c039776a88c0c
210
μs141.8
μs1.48
marlowe-role-payout/0f010d040810040b10020e040f0e030b0a0d100f0c080c0c05000d04100c100f
242
μs166.9
μs1.45
marlowe-role-payout/0e97c9d9417354d9460f2eb35018d3904b7b035af16ab299258adab93be0911a
230.9
μs157.1
μs1.47
marlowe-role-payout/0e72f62b0f922e31a2340baccc768104025400cf7fdd7dae62fbba5fc770936d
233.7
μs162.6
μs1.44
marlowe-role-payout/0e00171d0f1e1f14070d0a00091f07101808021d081e1b120219081312081e15
209.8
μs144.5
μs1.45
marlowe-role-payout/0dbb692d2bf22d25eeceac461cfebf616f54003077a8473abc0457f18e025960
249.7
μs175.7
μs1.42
marlowe-role-payout/0d0f01050a0a0a0b0b050d0404090e0d0506000d0a041003040e0f100e0a0408
218.4
μs151.6
μs1.44
marlowe-role-payout/0c9d3634aeae7038f839a1262d1a8bc724dc77af9426459417a56ec73240f0e0
218
μs150.6
μs1.45
marlowe-role-payout/0bdca1cb8fa7e38e09062557b82490714052e84e2054e913092cd84ac071b961
239.9
μs170.1
μs1.41
marlowe-role-payout/07658a6c898ad6d624c37df1e49e909c2e9349ba7f4c0a6be5f166fe239bfcae
202.4
μs135.9
μs1.49
marlowe-role-payout/06317060a8e488b1219c9dae427f9ce27918a9e09ee8ac424afa33ca923f7954
219.9
μs152.5
μs1.44
marlowe-role-payout/057ebc80922f16a5f4bf13e985bf586b8cff37a2f6fe0f3ce842178c16981027
207.9
μs140.3
μs1.48
marlowe-role-payout/04f592afc6e57c633b9c55246e7c82e87258f04e2fb910c37d8e2417e9db46e5
284
μs206.6
μs1.37
marlowe-role-payout/041a2c3b111139201a3a2c173c392b170e16370d300f2d28342d0f2f0e182e01
245.4
μs173.2
μs1.42
marlowe-role-payout/0405010105020401010304080005050800040301010800080207080704020206
244.7
μs168.7
μs1.45
marlowe-role-payout/0403020000030204010000030001000202010101000304030001040404030100
223.6
μs152.7
μs1.46
marlowe-role-payout/03d730a62332c51c7b70c16c64da72dd1c3ea36c26b41cd1a1e00d39fda3d6cc
239.2
μs167.4
μs1.43
marlowe-role-payout/031d56d71454e2c4216ffaa275c4a8b3eb631109559d0e56f44ea8489f57ba97
254.1
μs178.1
μs1.43
marlowe-role-payout/0303020000020001010201060303040208070100050401080304020801030001
209.3
μs141.6
μs1.48
marlowe-role-payout/0202010002010100020102020102020001010101020102010001010101000100
211.5
μs143.8
μs1.47
marlowe-role-payout/0201020201020000020000010201020001020200000002010200000101010100
227.1
μs154
μs1.47
marlowe-role-payout/01dcc372ea619cb9f23c45b17b9a0a8a16b7ca0e04093ef8ecce291667a99a4c
202.5
μs137.5
μs1.47
marlowe-role-payout/0101000100000101010000010101000100010101000001000001000000010101
241.3
μs170.5
μs1.42
marlowe-role-payout/0100000100010000000001000100010101000101000001000000010000010000
310.7
μs230.8
μs1.35
marlowe-role-payout/0004000402010401030101030100040000010104020201030001000204020401
230.5
μs157.8
μs1.46
This comment was automatically generated by workflow using github-action-benchmark.
CC: @input-output-hk/plutus-core