-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_hetero.py
144 lines (116 loc) · 5 KB
/
model_hetero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""This model shows an example of using dgl.metapath_reachable_graph on the original heterogeneous
graph.
Because the original HAN implementation only gives the preprocessed homogeneous graph, this model
could not reproduce the result in HAN as they did not provide the preprocessing code, and we
constructed another dataset from ACM with a different set of papers, connections, features and
labels.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
from dgl.nn.pytorch import GATConv
class SemanticAttention(nn.Module):
def __init__(self, in_size, hidden_size=128):
super(SemanticAttention, self).__init__()
self.project = nn.Sequential(
nn.Linear(in_size, hidden_size),
nn.Tanh(),
nn.Linear(hidden_size, 1, bias=False)
)
def forward(self, z):
w = self.project(z).mean(0) # (M, 1)
beta = torch.softmax(w, dim=0) # (M, 1)
beta = beta.expand((z.shape[0],) + beta.shape) # (N, M, 1)
return (beta * z).sum(1) # (N, D * K)
class HANLayer(nn.Module):
"""
HAN layer.
Arguments
---------
meta_paths : list of metapaths, each as a list of edge types
in_size : input feature dimension
out_size : output feature dimension
layer_num_heads : number of attention heads
dropout : Dropout probability
Inputs
------
g : DGLHeteroGraph
The heterogeneous graph
h : tensor
Input features
Outputs
-------
tensor
The output feature
"""
def __init__(self, meta_paths, in_size, out_size, layer_num_heads, dropout):
super(HANLayer, self).__init__()
# One GAT layer for each meta path based adjacency matrix
self.gat_layers = nn.ModuleList()
for i in range(len(meta_paths)):
self.gat_layers.append(GATConv(in_size, out_size, layer_num_heads,
dropout, dropout, activation=F.elu,
allow_zero_in_degree=True))
if len(meta_paths) > 1:
self.semantic_attention = SemanticAttention(in_size=out_size * layer_num_heads)
else:
self.semantic_attention = None
self.meta_paths = list(tuple(meta_path) for meta_path in meta_paths)
self._cached_graph = None
self._cached_coalesced_graph = {}
def forward(self, g, h):
semantic_embeddings = []
if self._cached_graph is None or self._cached_graph is not g:
self._cached_graph = g
self._cached_coalesced_graph.clear()
for meta_path in self.meta_paths:
self._cached_coalesced_graph[meta_path] = dgl.metapath_reachable_graph(
g, meta_path)
for i, meta_path in enumerate(self.meta_paths):
new_g = self._cached_coalesced_graph[meta_path]
semantic_embeddings.append(self.gat_layers[i](new_g, h).flatten(1))
if self.semantic_attention is not None:
semantic_embeddings = torch.stack(semantic_embeddings, dim=1) # (N, M, D * K)
return self.semantic_attention(semantic_embeddings) # (N, D * K)
else:
return semantic_embeddings[-1]
class HAN(nn.Module):
def __init__(self, meta_paths, in_size, hidden_size, out_size, num_heads, dropout):
super(HAN, self).__init__()
self.layers = nn.ModuleList()
self.layers.append(HANLayer(meta_paths, in_size, hidden_size, num_heads[0], dropout))
for l in range(1, len(num_heads)):
self.layers.append(HANLayer(meta_paths, hidden_size * num_heads[l-1],
hidden_size, num_heads[l], dropout))
def forward(self, g, h):
for gnn in self.layers:
h = gnn(g, h)
return h
class SS_HAN(nn.Module):
def __init__(self, muti_meta_paths, in_size, hidden_size, out_size, num_heads, dropout):
super(SS_HAN, self).__init__()
self.han = nn.ModuleList()
for meta_paths in muti_meta_paths:
self.han.append(HAN(meta_paths, in_size, hidden_size, out_size, num_heads, dropout))
def forward(self, g, h):
embeddings = []
for i, han in enumerate(self.han):
embeddings.append(han(g, h[i]))
return embeddings
def calculate_loss(self, embeddings, pos_edge_index, neg_edge_index):
edge_index = torch.cat([pos_edge_index, neg_edge_index], dim=-1)
z = torch.cat(embeddings, dim=0)
logits = (z[edge_index[0]] * z[edge_index[1]]).sum(dim=-1)
return logits
class Classifier(nn.Module):
def __init__(self, in_size, hidden_size, out_size):
super(Classifier, self).__init__()
self.hidden_layer = nn.Linear(in_size, hidden_size)
self.output_layer = nn.Linear(hidden_size, out_size)
def forward(self, x):
x = self.hidden_layer(x)
x = F.relu(x)
x = F.dropout(x)
x = self.output_layer(x)
return x