-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
434 lines (388 loc) · 20.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import os
import app
import evaluation
import logger
import time
from torchtext import data
import torch
from model_attn import Attention
from model_attn_dot import AttentionDot
from model_qac import FastDynamic
from baseline import SM
import json
print(os.getpid())
class Args(app.ArgParser):
def __init__(self):
super(Args, self).__init__(description="Twitter Search", batch_size=1, dev_every=30, log_every=1, patience=1000,
dataset_path="data")
self.parser.add_argument('--word_embed_dim', type=int, default=300)
self.parser.add_argument('--ext_feats', action='store_true', default=False,
help='use sparse features (default: false)')
self.parser.add_argument('--dropout', type=float, default=0.5, help='dropout probability (default: 0.5)')
self.parser.add_argument('--output_channel', type=int, default=350)
self.parser.add_argument('--hidden_size', type=int, default=350)
self.parser.add_argument('--attn_hidden', type=int, default=300)
self.parser.add_argument('--hidden_layer_units', type=int, default=100)
self.parser.add_argument('--kernel_size', type=int, default=2)
self.parser.add_argument('--vector_cache', type=str,
default="data/twitter.glove.pt",
help="word embedding file, pt format")
self.parser.add_argument('--lr', type=float, default=0.003, help='learning rate (default: 0.001)')
self.parser.add_argument('--weighted_loss', default=False, action="store_true")
self.parser.add_argument('--tensorboard', type=str, default='logs')
self.parser.add_argument('--train_dataset', type=str, default='134')
self.parser.add_argument('--model_type', default="attn", type=str)
## For ablation experiment
self.parser.add_argument('--gating_source', default="embed", type=str)
## For MPCNN
self.parser.add_argument('--max_window_size', type=int, default=3,
help='windows sizes will be [1,max_window_size] and infinity (default: 300)')
self.parser.add_argument('--holistic_filters', type=int, default=300,
help='number of holistic filters (default: 300)')
self.parser.add_argument('--per_dim_filters', type=int, default=20,
help='number of per-dimension filters (default: 20)')
self.parser.add_argument('--small_batch_size', type=int, default=256)
## For BiMPM
self.parser.add_argument('--n_word_dim', type=int, default=300)
self.parser.add_argument('--n_perspectives', type=int, default=20)
self.parser.add_argument('--n_hidden_units', type=int, default=100)
self.parser.add_argument('--bimpm_dropout', type=float, default=0.1)
self.parser.add_argument('--tfidf_file', type=str, default="data/idf_unigram.json")
self.parser.add_argument("--shuffle", action="store_true", default=False)
arg_parser = Args()
args = arg_parser.get_args()
args.batch_size = 200
args.train_txt = 'train{}.combb'.format(args.train_dataset)
args.valid_txt = 'valid{}.combb'.format(args.train_dataset)
args.test_txt = 'test{}.combb'.format(args.train_dataset)
print(args)
# Fields
QID = data.Field(batch_first=True, sequential=False, preprocessing=lambda x:int(x), use_vocab=False)
QSEQ = data.Field(batch_first=True, sequential=False, preprocessing=lambda x:int(x), use_vocab=False)
TEXT = data.Field(batch_first=True)
LABEL = data.Field(batch_first=True, sequential=False, unk_token=None)
TIME = data.Field(batch_first=True, sequential=False, use_vocab=False)
IRFEATURE = data.Field(batch_first=True, sequential=True, use_vocab=False, tensor_type=torch.FloatTensor,
postprocessing=data.Pipeline(lambda arr, _, train: [float(y) for y in arr]))
fields = [('QID', QID), ('QSEQ', QSEQ), ('QUESTION',TEXT), ('ANSWER',TEXT), ('LABEL',LABEL),
('TIME',TIME), ('IRFEATURE',IRFEATURE)]
include_test = [False, False, True, True, False, False, False]
# Hack batch_size_fn to make examples groups with query id
# def batch(data, batch_size, batch_size_fn=lambda new, count, sofar: count):
# """Yield elements from data in chunks of batch_size."""
# minibatch, size_so_far = [], 0
# for ex in data:
# minibatch.append(ex)
# size_so_far = batch_size_fn(ex, len(minibatch), size_so_far)
# if size_so_far == batch_size:
# yield minibatch
# minibatch, size_so_far = [], 0
# elif size_so_far > batch_size:
# yield minibatch[:-1]
# minibatch, size_so_far = minibatch[-1:], batch_size_fn(ex, 1, 0)
# if minibatch:
# yield minibatch
# According to this function, we will define our batch_zise_fn
# For twitter dataset, we want to group twitter with same query. So we need to know how many twitters in one query
# And then create a dynamic batch
# batch_size = 1, batch_size_fn : if reach batch_size, return 1, else return 0
batch_size_fn_zoo = {}
class batch_size_fn:
def __init__(self, boundary):
self.boundary = boundary
print(boundary)
def __call__(self, new, count, sofar):
# Before create Batch, example's attribute is not Variable
# Need to use preprocessing to convert it into int
if new.QSEQ == self.boundary[new.QID]:
return 200
return 0
for fname in ["train{}".format(args.train_dataset),
"valid{}".format(args.train_dataset),
"test{}".format(args.train_dataset)]:
fboundary = open("data/{}.boundaryb".format(fname))
boundary = {}
for line in fboundary.readlines():
key, value = line.strip().split('\t')
boundary[int(key)] = int(value)
if args.shuffle:
batch_size_fn_zoo[fname] = None
else:
batch_size_fn_zoo[fname] = batch_size_fn(boundary)
class criterion:
# You need to do any modification to loss here
# TODO: Might need to pass model parameters
def __init__(self):
if args.weighted_loss:
print("Use Weighted Loss")
if args.cuda:
self.crit = torch.nn.NLLLoss(weight=torch.FloatTensor([0.1, 1]).cuda(args.gpu))
else:
self.crit = torch.nn.NLLLoss(weight=torch.FloatTensor([0.1, 1]))
else:
self.crit = torch.nn.NLLLoss()
def __call__(self, output, label):
# return loss
return self.crit(output[0], label)
class optimizer:
def __init__(self, parameter, config):
self.optim = torch.optim.SGD(parameter, lr = config.lr, weight_decay=1e-4, momentum=0.9)
l = lambda epoch: 0.75 ** (epoch // 5)
self.scheduler = torch.optim.lr_scheduler.LambdaLR(self.optim, lr_lambda=l)
def zero_grad(self):
self.optim.zero_grad()
def step(self):
self.optim.step()
def schedule(self):
pass
self.scheduler.step()
print("learning rate : ", self.scheduler.get_lr(), self.scheduler.base_lrs)
def evaluator(name, pairs):
if type(pairs) != list and type(pairs) == tuple:
pairs = [pairs]
n_correct = 0
n_total = 0
pk = 0
k = 30
qa_eval_list = []
for output, batch in pairs:
n_correct += torch.sum((torch.max(output, 1)[1].view(batch.LABEL.size()).data == batch.LABEL.data)).item()
n_total += batch.LABEL.size(0)
logit = output.cpu().data.numpy()[:, 1]
actual = batch.LABEL.cpu().data.numpy()
qa_eval_list.append((logit, actual)) # Get top k
# output = (batch, label_size)
top_k_scores, top_k_indices = torch.topk(output[:,1], k=min(k, output.size(0)), sorted=True)
top_k_scores_array = top_k_scores.cpu().data.numpy()
top_k_indices_array = top_k_indices.cpu().data.numpy()
label = batch.LABEL.cpu().data.numpy()
tp = 0
for index in top_k_indices_array:
if label[index] == 1:
tp += 1
pk += tp / k
if name == "test":
MAP, MRR, P_30 = evaluation.TWITTER_MAP_MRR(qa_eval_list, pred_fname="pred.test.{}".format(os.getpid()),
gold_fname="data/qrels.txt",
id_fname="data/test{}.idb".format(args.train_dataset),
qid_index=0, docid_index=1, delimiter=' ', model="NN")
return (n_correct / n_total, P_30, MAP, MRR)
if name == "valid":
MAP, MRR, P_30 = evaluation.TWITTER_MAP_MRR(qa_eval_list, pred_fname="pred.valid.{}".format(os.getpid()),
gold_fname="data/qrels.txt",
id_fname="data/valid{}.idb".format(args.train_dataset),
qid_index=0, docid_index=1, delimiter=' ', model="NN")
return (n_correct / n_total, P_30, MAP)
if name == "train":
return (n_correct / n_total, )
# The evaluator output is the input of metrics_comparison
# Used in parameters selection
def metrics_comparison(new_metrics, best_metrics):
if best_metrics == None or new_metrics[1] >= best_metrics[1]:
return True
return False
log = logger.Logger(args.tensorboard)
# The evaluator output is the input of log_printer
def log_printer(name, metrics, loss, epoch=None, iters=None):
if name == 'train':
print("{}\tEPOCH:{}\tITER:{}\tACC:{}\tNearest batch training LOSS:{}".format(name, epoch, iters, metrics[0],loss))
step = int(iters.split('/')[0]) + int(iters.split('/')[1]) * (epoch - 1)
log.scalar_summary(tag='loss', value=loss, step=step)
elif name == 'valid':
print("{}\tACC:{}\tP30:{}MAP:{}\tLOSS:{}".format(name, metrics[0], metrics[1], metrics[2], loss))
if iters != None and epoch != None and loss != None:
step = int(iters.split('/')[0]) + int(iters.split('/')[1]) * (epoch - 1)
log.scalar_summary(tag='valid_loss', value=loss, step=step)
else:
print("{}\tACC:{}\tP30:{}\tMAP:{}\tMRR:{}\tLOSS:{}".format(name, metrics[0], metrics[1], metrics[2], metrics[3],loss))
if iters != None and epoch != None and loss != None:
step = int(iters.split('/')[0]) + int(iters.split('/')[1]) * (epoch - 1)
log.scalar_summary(tag='test_loss', value=loss, step=step)
class Trainer(app.TrainAPP):
def __init__(self, **kwargs):
super(Trainer, self).__init__(**kwargs)
self.config.word_num = len(self.QUESTION.vocab)
self.config.num_classes = len(self.LABEL.vocab)
# QUESTION and ANSWER use same Field
stoi, vectors, dim = torch.load(self.config.vector_cache)
match_embedding = 0
self.QUESTION.vocab.vectors = torch.Tensor(len(TEXT.vocab), dim)
for i, token in enumerate(self.QUESTION.vocab.itos):
wv_index = stoi.get(token, None)
if wv_index is not None:
self.QUESTION.vocab.vectors[i] = vectors[wv_index]
match_embedding += 1
else:
self.QUESTION.vocab.vectors[i] = torch.FloatTensor(self.config.word_embed_dim).uniform_(-0.05, 0.05)#normal_(0, 1)
print("Matching {} out of {}".format(match_embedding, len(self.QUESTION.vocab)))
def prepare(self, **kwargs):
super(Trainer, self).prepare(**kwargs)
self.model.embedding.weight.data.copy_(self.QUESTION.vocab.vectors)
# print("Start to load tfidf information")
# tfidf = load_tfidf(stoi=self.QUESTION.vocab.stoi, file_path=self.config.tfidf_file)
# self.model.tfidf.weight.data.copy_(tfidf)
# self.model.tfidf.weight.requires_grad = False
# print("Finish loading tfidf")
print(self.model)
print(self.LABEL.vocab.itos)
print("Training instance : ", len(self.train_iter.dataset))
print("Valid instance : ", len(self.valid_iter.dataset))
print("Testing instance : ", len(self.test_iter.dataset))
def testing(self, epoch):
with torch.no_grad():
small_batch_size = 32
self.model.eval()
self.test_iter.init_epoch()
test_result = []
test_loss = 0
for test_batch_idx, test_batch in enumerate(self.test_iter):
small_batch = (test_batch.QUESTION.size(0) - 1) // small_batch_size + 1
logit = []
for i in range(small_batch):
if i == small_batch - 1:
sent1 = test_batch.QUESTION[small_batch_size * i:]
sent2 = test_batch.ANSWER[small_batch_size * i:]
label = test_batch.LABEL[small_batch_size * i:]
ext = test_batch.IRFEATURE[small_batch_size * i:]
else:
sent1 = test_batch.QUESTION[small_batch_size * i:small_batch_size * (i + 1)]
sent2 = test_batch.ANSWER[small_batch_size * i:small_batch_size * (i + 1)]
label = test_batch.LABEL[small_batch_size * i: small_batch_size * (i + 1)]
ext = test_batch.IRFEATURE[small_batch_size * i: small_batch_size * (i + 1)]
if self.config.ext_feats:
test_output_ = self.model(sent1, sent2, ext)
else:
test_output_ = self.model(sent1, sent2, None)
logit.append(test_output_[0])
test_loss += self.criterion(test_output_, label).item()
test_output = torch.cat(logit, dim=0)
test_result.append((test_output, test_batch))
test_metrics = self.evaluator("test", test_result)
self.log_printer("test", loss=test_loss, metrics=test_metrics)
def train(self):
epoch = 0
iterations = 0
best_metrics = None
iters_not_improved = 0
small_batch_size = args.small_batch_size
time_output = open("training_time_{}".format(args.model_type), "w")
one_epoch_flag = False
true_batch_counter = 0
while True:
epoch += 1
if epoch > 15:
print("Stopping")
break
self.train_iter.init_epoch()
self.optimizer.schedule()
for batch_idx, batch in enumerate(self.train_iter):
if not one_epoch_flag:
true_batch_counter += 1
iterations += 1
self.model.train()
train_loss = 0
small_batch = (batch.QUESTION.size(0) - 1) // small_batch_size + 1
logit = []
start_training_time = time.time()
for i in range(small_batch):
self.optimizer.zero_grad()
if i == small_batch - 1:
sent1 = batch.QUESTION[small_batch_size * i:]
sent2 = batch.ANSWER[small_batch_size * i:]
label = batch.LABEL[small_batch_size * i:]
ext = batch.IRFEATURE[small_batch_size * i:]
else:
sent1 = batch.QUESTION[small_batch_size * i:small_batch_size * (i + 1)]
sent2 = batch.ANSWER[small_batch_size * i:small_batch_size * (i + 1)]
label = batch.LABEL[small_batch_size * i:small_batch_size * (i + 1)]
ext = batch.IRFEATURE[small_batch_size * i: small_batch_size * (i + 1)]
if self.config.ext_feats:
output_ = self.model(sent1, sent2, ext)
else:
output_ = self.model(sent1, sent2, None)
logit.append(output_[0])
loss = self.criterion(output_, label)
loss.backward()
self.optimizer.step()
train_loss += loss.item()
end_training_time = time.time()
batch_size = batch.QUESTION.size(0)
elapsed = end_training_time - start_training_time
averaged_elpased = elapsed / batch_size
time_output.write("{}\t{}\t{}\t{}\t{}\n".format(start_training_time,
end_training_time,
elapsed,
averaged_elpased,
batch_size))
time_output.flush()
output = torch.cat(logit, dim=0)
# We generate metrics for each batch, not all batches so far
metrics = self.evaluator("train", (output, batch))
with torch.no_grad():
if iterations % self.args.valid_every == 1:
self.model.eval()
self.valid_iter.init_epoch()
valid_result = []
valid_loss = 0
for valid_batch_idx, valid_batch in enumerate(self.valid_iter):
small_batch = (valid_batch.QUESTION.size(0) - 1) // small_batch_size + 1
logit = []
for i in range(small_batch):
if i == small_batch - 1:
sent1 = valid_batch.QUESTION[small_batch_size * i:]
sent2 = valid_batch.ANSWER[small_batch_size * i:]
label = valid_batch.LABEL[small_batch_size * i :]
ext = valid_batch.IRFEATURE[small_batch_size * i :]
else:
sent1 = valid_batch.QUESTION[small_batch_size * i:small_batch_size * (i + 1)]
sent2 = valid_batch.ANSWER[small_batch_size * i:small_batch_size * (i + 1)]
label = valid_batch.LABEL[small_batch_size * i: small_batch_size * (i + 1)]
ext = valid_batch.IRFEATURE[small_batch_size * i: small_batch_size * (i + 1)]
if self.config.ext_feats:
valid_output_ = self.model(sent1, sent2, ext)
else:
valid_output_ = self.model(sent1, sent2, None)
logit.append(valid_output_[0])
valid_loss += self.criterion(valid_output_, label).item()
valid_output = torch.cat(logit, dim=0)
valid_result.append((valid_output, valid_batch))
valid_metrics = self.evaluator("valid", valid_result)
self.log_printer("valid", loss=valid_loss, metrics=valid_metrics)
if self.metrics_comparison(valid_metrics, best_metrics):
best_metrics = valid_metrics
torch.save(self.model, self.snapshot_path)
print("Saving model to {}".format(self.snapshot_path))
self.testing(epoch)
if iterations % self.args.log_every == 0:
self.log_printer("train", loss=train_loss, metrics=metrics, epoch= epoch, iters= "{}/{}".format(batch_idx ,true_batch_counter if one_epoch_flag else -1))
one_epoch_flag = True
def load_tfidf(stoi, file_path):
word_weights = json.load(open(file_path))
tfidf = torch.Tensor(len(stoi), 1)
for word in stoi:
idx = stoi[word]
if word in word_weights:
tfidf[idx] = word_weights[word]
else:
tfidf[idx] = 1
return tfidf
if __name__=='__main__':
trainer = Trainer(args=args, fields=fields, include_test=include_test,
batch_size_fn_train=batch_size_fn_zoo['train{}'.format(args.train_dataset)],
batch_size_fn_valid=batch_size_fn_zoo['valid{}'.format(args.train_dataset)],
batch_size_fn_test=batch_size_fn_zoo['test{}'.format(args.train_dataset)],
train_shuffle=args.shuffle)
if args.model_type == 'attn':
model = Attention
elif args.model_type == "qac":
model = FastDynamic
elif args.model_type == "baselines":
model = SM
elif args.model_type == "attn_dot":
model = AttentionDot
else:
print("Wrong Model Type")
exit()
trainer.prepare(model=model, optimizer=optimizer, criterion=criterion(), evaluator=evaluator,
metrics_comparison=metrics_comparison, log_printer=log_printer)
trainer.train()