forked from znxlwm/tensorflow-MNIST-GAN-DCGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow_MNIST_GAN.py
223 lines (178 loc) · 7.57 KB
/
tensorflow_MNIST_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os, time, itertools, imageio, pickle
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# G(z)
def generator(x):
# initializers
w_init = tf.truncated_normal_initializer(mean=0, stddev=0.02)
b_init = tf.constant_initializer(0.)
# 1st hidden layer
w0 = tf.get_variable('G_w0', [x.get_shape()[1], 256], initializer=w_init)
b0 = tf.get_variable('G_b0', [256], initializer=b_init)
h0 = tf.nn.relu(tf.matmul(x, w0) + b0)
# 2nd hidden layer
w1 = tf.get_variable('G_w1', [h0.get_shape()[1], 512], initializer=w_init)
b1 = tf.get_variable('G_b1', [512], initializer=b_init)
h1 = tf.nn.relu(tf.matmul(h0, w1) + b1)
# 3rd hidden layer
w2 = tf.get_variable('G_w2', [h1.get_shape()[1], 1024], initializer=w_init)
b2 = tf.get_variable('G_b2', [1024], initializer=b_init)
h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
# output hidden layer
w3 = tf.get_variable('G_w3', [h2.get_shape()[1], 784], initializer=w_init)
b3 = tf.get_variable('G_b3', [784], initializer=b_init)
o = tf.nn.tanh(tf.matmul(h2, w3) + b3)
return o
# D(x)
def discriminator(x, drop_out):
# initializers
w_init = tf.truncated_normal_initializer(mean=0, stddev=0.02)
b_init = tf.constant_initializer(0.)
# 1st hidden layer
w0 = tf.get_variable('D_w0', [x.get_shape()[1], 1024], initializer=w_init)
b0 = tf.get_variable('D_b0', [1024], initializer=b_init)
h0 = tf.nn.relu(tf.matmul(x, w0) + b0)
h0 = tf.nn.dropout(h0, drop_out)
# 2nd hidden layer
w1 = tf.get_variable('D_w1', [h0.get_shape()[1], 512], initializer=w_init)
b1 = tf.get_variable('D_b1', [512], initializer=b_init)
h1 = tf.nn.relu(tf.matmul(h0, w1) + b1)
h1 = tf.nn.dropout(h1, drop_out)
# 3rd hidden layer
w2 = tf.get_variable('D_w2', [h1.get_shape()[1], 256], initializer=w_init)
b2 = tf.get_variable('D_b2', [1024], initializer=b_init)
h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
h2 = tf.nn.dropout(h2, drop_out)
# output layer
w3 = tf.get_variable('D_w3', [h2.get_shape()[1], 1], initializer=w_init)
b3 = tf.get_variable('D_b3', [1], initializer=b_init)
o = tf.sigmoid(tf.matmul(h2, w3) + b3)
return o
fixed_z_ = np.random.normal(0, 1, (25, 100))
def show_result(num_epoch, show = False, save = False, path = 'result.png', isFix=False):
z_ = np.random.normal(0, 1, (25, 100))
if isFix:
test_images = sess.run(G_z, {z: fixed_z_, drop_out: 0.0})
else:
test_images = sess.run(G_z, {z: z_, drop_out: 0.0})
size_figure_grid = 5
fig, ax = plt.subplots(size_figure_grid, size_figure_grid, figsize=(5, 5))
for i, j in itertools.product(range(size_figure_grid), range(size_figure_grid)):
ax[i, j].get_xaxis().set_visible(False)
ax[i, j].get_yaxis().set_visible(False)
for k in range(5*5):
i = k // 5
j = k % 5
ax[i, j].cla()
ax[i, j].imshow(np.reshape(test_images[k], (28, 28)), cmap='gray')
label = 'Epoch {0}'.format(num_epoch)
fig.text(0.5, 0.04, label, ha='center')
plt.savefig(path)
if show:
plt.show()
else:
plt.close()
def show_train_hist(hist, show = False, save = False, path = 'Train_hist.png'):
x = range(len(hist['D_losses']))
y1 = hist['D_losses']
y2 = hist['G_losses']
plt.plot(x, y1, label='D_loss')
plt.plot(x, y2, label='G_loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(loc=4)
plt.grid(True)
plt.tight_layout()
if save:
plt.savefig(path)
if show:
plt.show()
else:
plt.close()
# training parameters
batch_size = 100
lr = 0.0002
train_epoch = 100
# load MNIST
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
train_set = (mnist.train.images - 0.5) / 0.5 # normalization; range: -1 ~ 1
# networks : generator
with tf.variable_scope('G'):
z = tf.placeholder(tf.float32, shape=(None, 100))
G_z = generator(z)
# networks : discriminator
with tf.variable_scope('D') as scope:
drop_out = tf.placeholder(dtype=tf.float32, name='drop_out')
x = tf.placeholder(tf.float32, shape=(None, 784))
D_real = discriminator(x, drop_out)
scope.reuse_variables()
D_fake = discriminator(G_z, drop_out)
# loss for each network
eps = 1e-2
D_loss = tf.reduce_mean(-tf.log(D_real + eps) - tf.log(1 - D_fake + eps))
G_loss = tf.reduce_mean(-tf.log(D_fake + eps))
# trainable variables for each network
t_vars = tf.trainable_variables()
D_vars = [var for var in t_vars if 'D_' in var.name]
G_vars = [var for var in t_vars if 'G_' in var.name]
# optimizer for each network
D_optim = tf.train.AdamOptimizer(lr).minimize(D_loss, var_list=D_vars)
G_optim = tf.train.AdamOptimizer(lr).minimize(G_loss, var_list=G_vars)
# open session and initialize all variables
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# results save folder
if not os.path.isdir('MNIST_GAN_results'):
os.mkdir('MNIST_GAN_results')
if not os.path.isdir('MNIST_GAN_results/Random_results'):
os.mkdir('MNIST_GAN_results/Random_results')
if not os.path.isdir('MNIST_GAN_results/Fixed_results'):
os.mkdir('MNIST_GAN_results/Fixed_results')
train_hist = {}
train_hist['D_losses'] = []
train_hist['G_losses'] = []
train_hist['per_epoch_ptimes'] = []
train_hist['total_ptime'] = []
# training-loop
np.random.seed(int(time.time()))
start_time = time.time()
for epoch in range(train_epoch):
G_losses = []
D_losses = []
epoch_start_time = time.time()
for iter in range(train_set.shape[0] // batch_size):
# update discriminator
x_ = train_set[iter*batch_size:(iter+1)*batch_size]
z_ = np.random.normal(0, 1, (batch_size, 100))
loss_d_, _ = sess.run([D_loss, D_optim], {x: x_, z: z_, drop_out: 0.3})
D_losses.append(loss_d_)
# update generator
z_ = np.random.normal(0, 1, (batch_size, 100))
loss_g_, _ = sess.run([G_loss, G_optim], {z: z_, drop_out: 0.3})
G_losses.append(loss_g_)
epoch_end_time = time.time()
per_epoch_ptime = epoch_end_time - epoch_start_time
print('[%d/%d] - ptime: %.2f loss_d: %.3f, loss_g: %.3f' % ((epoch + 1), train_epoch, per_epoch_ptime, np.mean(D_losses), np.mean(G_losses)))
p = 'MNIST_GAN_results/Random_results/MNIST_GAN_' + str(epoch + 1) + '.png'
fixed_p = 'MNIST_GAN_results/Fixed_results/MNIST_GAN_' + str(epoch + 1) + '.png'
show_result((epoch + 1), save=True, path=p, isFix=False)
show_result((epoch + 1), save=True, path=fixed_p, isFix=True)
train_hist['D_losses'].append(np.mean(D_losses))
train_hist['G_losses'].append(np.mean(G_losses))
train_hist['per_epoch_ptimes'].append(per_epoch_ptime)
end_time = time.time()
total_ptime = end_time - start_time
train_hist['total_ptime'].append(total_ptime)
print('Avg per epoch ptime: %.2f, total %d epochs ptime: %.2f' % (np.mean(train_hist['per_epoch_ptimes']), train_epoch, total_ptime))
print("Training finish!... save training results")
with open('MNIST_GAN_results/train_hist.pkl', 'wb') as f:
pickle.dump(train_hist, f)
show_train_hist(train_hist, save=True, path='MNIST_GAN_results/MNIST_GAN_train_hist.png')
images = []
for e in range(train_epoch):
img_name = 'MNIST_GAN_results/Fixed_results/MNIST_GAN_' + str(e + 1) + '.png'
images.append(imageio.imread(img_name))
imageio.mimsave('MNIST_GAN_results/generation_animation.gif', images, fps=5)
sess.close()