-
Notifications
You must be signed in to change notification settings - Fork 0
/
anemoi_pBN-254_n1_l1_a7_mPCICO_o1.txt
6241 lines (5295 loc) · 429 KB
/
anemoi_pBN-254_n1_l1_a7_mPCICO_o1.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Model: PCICO. Use final LL: True.
====================================================================================================
ANEMOI GF(21888242871839275222246405745257275088548364400416034343698204186575808495617^1), alpha = 7, QUAD = 2. With final LL. Model: PCICO
rmax = 10, tmax = 3600.
====================================================================================================
====================================================================================================
n_r: 1, n_v: 2, n_e: 2, mdeg: 7
degs = [7, 2]
Multivariate Polynomial Ring in Y0000, S0100 over Finite Field of size 21888242871839275222246405745257275088548364400416034343698204186575808495617
----------------------------------------------------------------------------------------------------
Starting GB computation... (r=1)
********************
FAUGERE F4 ALGORITHM
********************
Coefficient ring: GF(21888242871839275222246405745257275088548364400416034343698204186575808495617)
Rank: 2
Order: Graded Reverse Lexicographical
NEW hash table
Matrix kind: Generic finite field
Generic field
Datum size: 4
No queue sort
Initial length: 2
Inhomogeneous
Initial queue setup time: 0.000
Initial queue length: 1
*******
STEP 1
Basis length: 2, queue length: 1, step degree: 8, num pairs: 1
Basis total mons: 9, average length: 4.500
Number of pair polynomials: 1, at 8 column(s), 0.000
Average length for reductees: 5.00 [1], reductors: 4.70 [10]
Symbolic reduction time: 0.000, column sort time: 0.000
1 + 10 = 11 rows / 20 columns out of 45 (44.444%)
Density: 23.636% / 40.368% (4.7273/r), total: 52 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [1]
After ech memory: 32.1MB (=max)
Num new polynomials: 1 (100.0%), min deg: 6 [1], av deg: 6.0
Degree counts: 6:1
Queue insertion time: 0.000
New max step: 1, time: 0.000
Step 1 time: 0.000, [0.002], mat/total: 0.000/0.000, mem: 32.1MB (=max)
*******
STEP 2
Basis length: 3, queue length: 2, step degree: 7, num pairs: 2
Basis total mons: 19, average length: 6.333
Number of pair polynomials: 2, at 20 column(s), 0.000
Average length for reductees: 10.00 [2], reductors: 5.36 [11]
Symbolic reduction time: 0.000, column sort time: 0.000
2 + 11 = 13 rows / 21 columns out of 36 (58.333%)
Density: 28.938% / 45.124% (6.0769/r), total: 79 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [1]
After ech memory: 32.1MB (=max)
Num new polynomials: 1 (50.0%), min deg: 5 [1], av deg: 5.0
Degree counts: 5:1
Queue insertion time: 0.000
Step 2 time: 0.000, [0.002], mat/total: 0.000/0.000, mem: 32.1MB (=max)
*******
STEP 3
Basis length: 4, queue length: 2, step degree: 6, num pairs: 2
Basis total mons: 29, average length: 7.250
Number of pair polynomials: 2, at 20 column(s), 0.000
Average length for reductees: 10.00 [2], reductors: 5.77 [13]
Symbolic reduction time: 0.000, column sort time: 0.000
2 + 13 = 15 rows / 23 columns out of 28 (82.143%)
Density: 27.536% / 44.069% (6.3333/r), total: 95 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [1]
After ech memory: 32.1MB (=max)
Num new polynomials: 1 (50.0%), min deg: 5 [1], av deg: 5.0
Degree counts: 5:1
Queue insertion time: 0.000
Step 3 time: 0.000, [0.002], mat/total: 0.000/0.000, mem: 32.1MB (=max)
*******
STEP 4
Basis length: 5, queue length: 1, step degree: 6, num pairs: 1
Basis total mons: 39, average length: 7.800
Number of pair polynomials: 1, at 13 column(s), 0.000
Average length for reductees: 10.00 [1], reductors: 5.83 [18]
Symbolic reduction time: 0.000, column sort time: 0.000
1 + 18 = 19 rows / 27 columns out of 28 (96.429%)
Density: 22.417% / 38.702% (6.0526/r), total: 115 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [0]
After ech memory: 32.1MB (=max)
No new polynomials
Queue insertion time: 0.000
Step 4 time: 0.000, [0.003], mat/total: 0.000/0.000, mem: 32.1MB (=max)
Reduce 5 final polynomial(s) by 5
0 redundant polynomial(s) removed; time: 0.000
Interreduce 3 (out of range [0 .. 4] = 5) polynomial(s)
Symbolic reduction time: 0.000
Column sort time: 0.000
3 + 0 = 3 rows / 12 columns
Density: 69.444% / 91.414% (8.3333/r), total: 25 (0.0MB)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [3]
Total reduction time: 0.000
Reduction time: 0.000
Final number of polynomials: 5
Final basis length: 3
Number of pairs: 6
Max step: 1, time: 0.000
Max num entries matrix: 19 by 27
Max num rows matrix: 19 by 27
Approx mat cost: 740.829, sym red cost: 366
Total pair setup time: 0.000
Total symbolic reduction time: 0.000
Total column sort time: 0.000
Total row sort time: 0.000
Total matrix time: 0.000
Total new polys time: 0.000
Total queue update time: 0.000
Total Faugere F4 time: 0.000, real time: 0.013
Time: 0.000
dregs = [ 8, 7, 6, 6 ]
----------------------------------------------------------------------------------------------------
Starting FGLM computation... (r=1)
*****************
FGLM ORDER CHANGE
*****************
Coefficient ring: GF(21888242871839275222246405745257275088548364400416034343698204186575808495617)
Rank: 2
Initial order: Graded Reverse Lexicographical
Final order: Lexicographical
Basis length: 3
Quotient dimension: 9
Step 1, 0 columns
Monomial 0: 1
Row 0: pivot 0
Step 2, 1 columns
Monomial 1: S0100
Best monomial: 1
Row 1: pivot 1
Step 3, 2 columns
Monomial 2: S0100^2
Best monomial: S0100
Row 2: pivot 2
Step 4, 3 columns
Monomial 3: S0100^3
Best monomial: S0100^2
Row 3: pivot 3
Step 5, 4 columns
Monomial 4: S0100^4
Best monomial: S0100^3
Row 4: pivot 4
Step 6, 5 columns
Monomial 5: S0100^5
Best monomial: S0100^4
Row 5: pivot 5
Step 7, 9 columns
Monomial 6: S0100^6
Best monomial: S0100^5
Row 6: pivot 6
Step 8, 9 columns
Monomial 7: S0100^7
Best monomial: S0100^6
Row 7: pivot 7
Step 9, 9 columns
Monomial 8: S0100^8
Best monomial: S0100^7
Row 8: pivot 8
Step 10, 9 columns
Monomial 9: S0100^9
Best monomial: S0100^8
Row 9: pivot -1
New polynomial 0, leading monomial: S0100^9, 0.000
Polynomial: S0100^9 + 19699418584655347700021765170731547579693527960374430909328383767918227646055*S0100^8 + 1258573965130758325279168330352293317591530953023921974762646740728108988498*S0100^7 + 16416182153879456416684804308942956316411273300312025757773653139931856371714*S0100^4 + 16416182153879456416684804308942956316411273300312025757773653139931856371712*S0100^3 + 14500960902593519834738243806232944746163291415275622752700060273606473128280*S0100^2 + 19425815548757356759743685098915831641086673405369230480032156215586030039880*S0100 + 11436606900536021303623747001896926233766520399217377944582311687485859939846
Step 11, 9 columns
Monomial 9: Y0000
Best monomial: 1
Row 9: pivot -1
New polynomial 1, leading monomial: Y0000, 0.000
Polynomial: Y0000 + 9965629295153016479365963700322127404514983810415518779432159200436476088679*S0100^8 + 21487810621158286511453831477471819732298535048874508243968290515839127507096*S0100^7 + 17929097336901089404769056061716978027780820863123407060214750047189547234753*S0100^3 + 14914561213825748751212650804747498730474413232031302883786476874669302664759*S0100^2 + 4829828992829156142482741937596876912305634024747022495203881813193198384621*S0100 + 11199782026739038095706154135907043656341380940038376143215123898450554417669
Total FGLM time: 0.000
Time: 0.000
unideg = 9
----------------------------------------------------------------------------------------------------
Starting UNIV SOLVING computation... (r=1)
Time: 0.010
nsols = 0
----------------------------------------------------------------------------------------------------
Starting MULTIPLICITY computation... (r=1)
nsols_mult = 0
====================================================================================================
n_r: 2, n_v: 3, n_e: 3, mdeg: 7
degs = [7, 7, 3]
Multivariate Polynomial Ring in Y0000, S0200, S0100 over Finite Field of size 21888242871839275222246405745257275088548364400416034343698204186575808495617
----------------------------------------------------------------------------------------------------
Starting GB computation... (r=2)
********************
FAUGERE F4 ALGORITHM
********************
Coefficient ring: GF(21888242871839275222246405745257275088548364400416034343698204186575808495617)
Rank: 3
Order: Graded Reverse Lexicographical
NEW hash table
Matrix kind: Generic finite field
Generic field
Datum size: 4
No queue sort
Initial length: 3
Inhomogeneous
Initial queue setup time: 0.000
Initial queue length: 2
*******
STEP 1
Basis length: 3, queue length: 2, step degree: 9, num pairs: 2
Basis total mons: 28, average length: 9.333
Number of pair polynomials: 2, at 37 column(s), 0.000
Average length for reductees: 11.00 [2], reductors: 9.80 [25]
Symbolic reduction time: 0.000, column sort time: 0.000
2 + 25 = 27 rows / 82 columns out of 220 (37.273%)
Density: 12.06% / 20.519% (9.8889/r), total: 267 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [2]
After ech memory: 32.1MB (=max)
Num new polynomials: 2 (100.0%), min deg: 7 [1], av deg: 7.5
Degree counts: 7:1 8:1
Queue insertion time: 0.000
New max step: 1, time: 0.000
Step 1 time: 0.000, [0.002], mat/total: 0.000/0.000, mem: 32.1MB (=max)
*******
STEP 2
Basis length: 5, queue length: 5, step degree: 8, num pairs: 2
Basis total mons: 102, average length: 20.400
Number of pair polynomials: 2, at 75 column(s), 0.000
Average length for reductees: 40.00 [2], reductors: 12.08 [26]
Symbolic reduction time: 0.000, column sort time: 0.000
2 + 26 = 28 rows / 83 columns out of 165 (50.303%)
Density: 16.954% / 26.692% (14.071/r), total: 394 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [1]
After ech memory: 32.1MB (=max)
Num new polynomials: 1 (50.0%), min deg: 8 [1], av deg: 8.0
Degree counts: 8:1
Queue insertion time: 0.000
Step 2 time: 0.000, [0.002], mat/total: 0.000/0.000, mem: 32.1MB (=max)
*******
STEP 3
Basis length: 6, queue length: 6, step degree: 9, num pairs: 4
Basis total mons: 150, average length: 25.000
Number of pair polynomials: 4, at 109 column(s), 0.000
Average length for reductees: 41.00 [4], reductors: 13.42 [43]
Symbolic reduction time: 0.000, column sort time: 0.000
4 + 43 = 47 rows / 116 columns out of 220 (52.727%)
Density: 13.591% / 21.579% (15.766/r), total: 741 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [2]
After ech memory: 32.1MB (=max)
Num new polynomials: 2 (50.0%), min deg: 8 [2], av deg: 8.0
Degree counts: 8:2
Queue insertion time: 0.000
Step 3 time: 0.000, [0.002], mat/total: 0.000/0.000, mem: 32.1MB (=max)
*******
STEP 4
Basis length: 8, queue length: 6, step degree: 9, num pairs: 3
Basis total mons: 265, average length: 33.125
Number of pair polynomials: 3, at 106 column(s), 0.000
Average length for reductees: 54.33 [3], reductors: 14.72 [54]
Symbolic reduction time: 0.000, column sort time: 0.000
3 + 54 = 57 rows / 128 columns out of 220 (58.182%)
Density: 13.13% / 20.662% (16.807/r), total: 958 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000[r] + 0.000 = 0.000[r] [1]
After ech memory: 32.1MB (=max)
Num new polynomials: 1 (33.3%), min deg: 9 [1], av deg: 9.0
Degree counts: 9:1
Queue insertion time: 0.000
New max step: 4, time: 0.002[r]
Step 4 time: 0.002[r], [0.002], mat/total: 0.020/0.009[r], mem: 32.1MB (=max)
*******
STEP 5
Basis length: 9, queue length: 6, step degree: 10, num pairs: 3
Basis total mons: 321, average length: 35.667
Number of pair polynomials: 3, at 138 column(s), 0.000
Average length for reductees: 59.67 [3], reductors: 15.21 [78]
Symbolic reduction time: 0.000, column sort time: 0.000
3 + 78 = 81 rows / 159 columns out of 286 (55.594%)
Density: 10.599% / 17.139% (16.852/r), total: 1365 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [2]
After ech memory: 32.1MB (=max)
Num new polynomials: 2 (66.7%), min deg: 8 [1], av deg: 8.5
Degree counts: 8:1 9:1
Queue insertion time: 0.000
Step 5 time: 0.000, [0.002], mat/total: 0.020/0.010[r], mem: 32.1MB (=max)
*******
STEP 6
Basis length: 11, queue length: 9, step degree: 9, num pairs: 3
Basis total mons: 481, average length: 43.727
Number of pair polynomials: 3, at 156 column(s), 0.000
Average length for reductees: 80.00 [3], reductors: 17.97 [75]
Symbolic reduction time: 0.000, column sort time: 0.000
3 + 75 = 78 rows / 165 columns out of 220 (75.000%)
Density: 12.339% / 19.142% (20.359/r), total: 1588 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [3]
After ech memory: 32.1MB (=max)
Num new polynomials: 3 (100.0%), min deg: 8 [3], av deg: 8.0
Degree counts: 8:3
Queue insertion time: 0.000
Step 6 time: 0.000, [0.003], mat/total: 0.020/0.013[r], mem: 32.1MB (=max)
*******
STEP 7
Basis length: 14, queue length: 13, step degree: 9, num pairs: 6
Basis total mons: 732, average length: 52.286
Number of pair polynomials: 6, at 170 column(s), 0.000
Average length for reductees: 83.33 [6], reductors: 20.02 [107]
Symbolic reduction time: 0.000, column sort time: 0.000
6 + 107 = 113 rows / 198 columns out of 220 (90.000%)
Density: 11.808% / 18.269% (23.381/r), total: 2642 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [4]
After ech memory: 32.1MB (=max)
Num new polynomials: 4 (66.7%), min deg: 8 [4], av deg: 8.0
Degree counts: 8:4
Queue insertion time: 0.000
Step 7 time: 0.000, [0.004], mat/total: 0.020/0.019[r], mem: 32.1MB (=max)
*******
STEP 8
Basis length: 18, queue length: 18, step degree: 9, num pairs: 9
Basis total mons: 1066, average length: 59.222
Number of pair polynomials: 9, at 169 column(s), 0.000
Average length for reductees: 83.44 [9], reductors: 22.52 [105]
Symbolic reduction time: 0.000, column sort time: 0.000
9 + 105 = 114 rows / 191 columns out of 220 (86.818%)
Density: 14.311% / 21.088% (27.333/r), total: 3116 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [3]
After ech memory: 32.1MB (=max)
Num new polynomials: 3 (33.3%), min deg: 8 [3], av deg: 8.0
Degree counts: 8:3
Queue insertion time: 0.000
Step 8 time: 0.000, [0.005], mat/total: 0.020/0.020, mem: 32.1MB (=max)
*******
STEP 9
Basis length: 21, queue length: 16, step degree: 9, num pairs: 7
Basis total mons: 1317, average length: 62.714
Number of pair polynomials: 7, at 168 column(s), 0.000[r]
Average length for reductees: 83.57 [7], reductors: 26.72 [102]
Symbolic reduction time: 0.000, column sort time: 0.000
7 + 102 = 109 rows / 186 columns out of 220 (84.545%)
Density: 16.326% / 23.297% (30.367/r), total: 3310 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [3]
After ech memory: 32.1MB (=max)
Num new polynomials: 3 (42.9%), min deg: 7 [1], av deg: 7.7
Degree counts: 7:1 8:2
Queue insertion time: 0.000
New max step: 9, time: 0.005[r]
Step 9 time: 0.004[r], [0.005], mat/total: 0.020/0.029[r], mem: 32.1MB (=max)
*******
STEP 10
Basis length: 24, queue length: 15, step degree: 8, num pairs: 3
Basis total mons: 1563, average length: 65.125
Number of pair polynomials: 3, at 152 column(s), 0.000
Average length for reductees: 82.00 [3], reductors: 25.84 [81]
Symbolic reduction time: 0.000, column sort time: 0.000
3 + 81 = 84 rows / 162 columns out of 165 (98.182%)
Density: 17.188% / 24.447% (27.845/r), total: 2339 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [0]
After ech memory: 32.1MB (=max)
No new polynomials
Queue insertion time: 0.000
Step 10 time: 0.000, [0.002], mat/total: 0.020/0.030, mem: 32.1MB (=max)
*******
STEP 11
Basis length: 24, queue length: 12, step degree: 9, num pairs: 3
Basis total mons: 1563, average length: 65.125
Number of pair polynomials: 3, at 153 column(s), 0.000
Average length for reductees: 82.00 [3], reductors: 25.94 [83]
Symbolic reduction time: 0.000, column sort time: 0.000
3 + 83 = 86 rows / 164 columns out of 220 (74.545%)
Density: 17.009% / 24.259% (27.895/r), total: 2399 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [0]
After ech memory: 32.1MB (=max)
No new polynomials
Queue insertion time: 0.000
Step 11 time: 0.000, [0.003], mat/total: 0.020/0.030, mem: 32.1MB (=max)
*******
STEP 12
Basis length: 24, queue length: 9, step degree: 10, num pairs: 5
Basis total mons: 1563, average length: 65.125
5 pairs eliminated
No pairs to reduce
Pair elimination time: 0.000
*******
STEP 13
Basis length: 24, queue length: 4, step degree: 11, num pairs: 1
Basis total mons: 1563, average length: 65.125
1 pair eliminated
No pairs to reduce
Pair elimination time: 0.000
*******
STEP 14
Basis length: 24, queue length: 3, step degree: 12, num pairs: 2
Basis total mons: 1563, average length: 65.125
2 pairs eliminated
No pairs to reduce
Pair elimination time: 0.000
*******
STEP 15
Basis length: 24, queue length: 1, step degree: 13, num pairs: 1
Basis total mons: 1563, average length: 65.125
1 pair eliminated
No pairs to reduce
Pair elimination time: 0.000
Reduce 24 final polynomial(s) by 24
1 redundant polynomial(s) removed; time: 0.000
Interreduce 19 (out of range [0 .. 23] = 24) polynomial(s)
Symbolic reduction time: 0.000
Column sort time: 0.000
19 + 1 = 20 rows / 101 columns
Density: 62.426% / 71.782% (63.05/r), total: 1261 (0.0MB)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [19]
Total reduction time: 0.000
Reduction time: 0.000
Final number of polynomials: 23
Final basis length: 19
Number of pairs: 45
Max step: 9, time: 0.005
Max num entries matrix: 113 by 198
Max num rows matrix: 114 by 191
Approx mat cost: 137199, sym red cost: 20380
Total pair setup time: 0.010
Total symbolic reduction time: 0.000
Total column sort time: 0.000
Total row sort time: 0.000
Total matrix time: 0.020
Total new polys time: 0.000
Total queue update time: 0.000
Total Faugere F4 time: 0.030, real time: 0.041
Time: 0.030
dregs = [ 9, 8, 9, 9, 10, 9, 9, 9, 9, 8, 9, 10, 11, 12, 13 ]
----------------------------------------------------------------------------------------------------
Starting FGLM computation... (r=2)
*****************
FGLM ORDER CHANGE
*****************
Coefficient ring: GF(21888242871839275222246405745257275088548364400416034343698204186575808495617)
Rank: 3
Initial order: Graded Reverse Lexicographical
Final order: Lexicographical
Basis length: 19
Quotient dimension: 81
Step 1, 0 columns
Monomial 0: 1
Row 0: pivot 0
Step 2, 1 columns
Monomial 1: S0100
Best monomial: 1
Row 1: pivot 1
Step 3, 2 columns
Monomial 2: S0100^2
Best monomial: S0100
Row 2: pivot 2
Step 4, 3 columns
Monomial 3: S0100^3
Best monomial: S0100^2
Row 3: pivot 3
Step 5, 4 columns
Monomial 4: S0100^4
Best monomial: S0100^3
Row 4: pivot 4
Step 6, 5 columns
Monomial 5: S0100^5
Best monomial: S0100^4
Row 5: pivot 5
Step 7, 6 columns
Monomial 6: S0100^6
Best monomial: S0100^5
Row 6: pivot 6
Step 8, 7 columns
Monomial 7: S0100^7
Best monomial: S0100^6
Row 7: pivot 7
Step 9, 18 columns
Monomial 8: S0100^8
Best monomial: S0100^7
Row 8: pivot 10
Step 10, 20 columns
Monomial 9: S0100^9
Best monomial: S0100^8
Row 9: pivot 13
Step 11, 22 columns
Monomial 10: S0100^10
Best monomial: S0100^9
Row 10: pivot 14
Step 12, 25 columns
Monomial 11: S0100^11
Best monomial: S0100^10
Row 11: pivot 18
Step 13, 28 columns
Monomial 12: S0100^12
Best monomial: S0100^11
Row 12: pivot 20
Step 14, 31 columns
Monomial 13: S0100^13
Best monomial: S0100^12
Row 13: pivot 8
Step 15, 42 columns
Monomial 14: S0100^14
Best monomial: S0100^13
Row 14: pivot 9
Step 16, 43 columns
Monomial 15: S0100^15
Best monomial: S0100^14
Row 15: pivot 11
Step 17, 50 columns
Monomial 16: S0100^16
Best monomial: S0100^15
Row 16: pivot 12
Step 18, 50 columns
Monomial 17: S0100^17
Best monomial: S0100^16
Row 17: pivot 15
Step 19, 53 columns
Monomial 18: S0100^18
Best monomial: S0100^17
Row 18: pivot 16
Step 20, 56 columns
Monomial 19: S0100^19
Best monomial: S0100^18
Row 19: pivot 17
Step 21, 60 columns
Monomial 20: S0100^20
Best monomial: S0100^19
Row 20: pivot 19
Step 22, 64 columns
Monomial 21: S0100^21
Best monomial: S0100^20
Row 21: pivot 21
Step 23, 81 columns
Monomial 22: S0100^22
Best monomial: S0100^21
Row 22: pivot 22
Step 24, 81 columns
Monomial 23: S0100^23
Best monomial: S0100^22
Row 23: pivot 23
Step 25, 81 columns
Monomial 24: S0100^24
Best monomial: S0100^23
Row 24: pivot 24
Step 26, 81 columns
Monomial 25: S0100^25
Best monomial: S0100^24
Row 25: pivot 25
Step 27, 81 columns
Monomial 26: S0100^26
Best monomial: S0100^25
Row 26: pivot 26
Step 28, 81 columns
Monomial 27: S0100^27
Best monomial: S0100^26
Row 27: pivot 27
Step 29, 81 columns
Monomial 28: S0100^28
Best monomial: S0100^27
Row 28: pivot 28
Step 30, 81 columns
Monomial 29: S0100^29
Best monomial: S0100^28
Row 29: pivot 29
Step 31, 81 columns
Monomial 30: S0100^30
Best monomial: S0100^29
Row 30: pivot 30
Step 32, 81 columns
Monomial 31: S0100^31
Best monomial: S0100^30
Row 31: pivot 31
Step 33, 81 columns
Monomial 32: S0100^32
Best monomial: S0100^31
Row 32: pivot 32
Step 34, 81 columns
Monomial 33: S0100^33
Best monomial: S0100^32
Row 33: pivot 33
Step 35, 81 columns
Monomial 34: S0100^34
Best monomial: S0100^33
Row 34: pivot 34
Step 36, 81 columns
Monomial 35: S0100^35
Best monomial: S0100^34
Row 35: pivot 35
Step 37, 81 columns
Monomial 36: S0100^36
Best monomial: S0100^35
Row 36: pivot 36
Step 38, 81 columns
Monomial 37: S0100^37
Best monomial: S0100^36
Row 37: pivot 37
Step 39, 81 columns
Monomial 38: S0100^38
Best monomial: S0100^37
Row 38: pivot 38
Step 40, 81 columns
Monomial 39: S0100^39
Best monomial: S0100^38
Row 39: pivot 39
Step 41, 81 columns
Monomial 40: S0100^40
Best monomial: S0100^39
Row 40: pivot 40
Step 42, 81 columns
Monomial 41: S0100^41
Best monomial: S0100^40
Row 41: pivot 41
Step 43, 81 columns
Monomial 42: S0100^42
Best monomial: S0100^41
Row 42: pivot 42
Step 44, 81 columns
Monomial 43: S0100^43
Best monomial: S0100^42
Row 43: pivot 43
Step 45, 81 columns
Monomial 44: S0100^44
Best monomial: S0100^43
Row 44: pivot 44
Step 46, 81 columns
Monomial 45: S0100^45
Best monomial: S0100^44
Row 45: pivot 45
Step 47, 81 columns
Monomial 46: S0100^46
Best monomial: S0100^45
Row 46: pivot 46
Step 48, 81 columns
Monomial 47: S0100^47
Best monomial: S0100^46
Row 47: pivot 47
Step 49, 81 columns
Monomial 48: S0100^48
Best monomial: S0100^47
Row 48: pivot 48
Step 50, 81 columns
Monomial 49: S0100^49
Best monomial: S0100^48
Row 49: pivot 49
Step 51, 81 columns
Monomial 50: S0100^50
Best monomial: S0100^49
Row 50: pivot 50
Step 52, 81 columns
Monomial 51: S0100^51
Best monomial: S0100^50
Row 51: pivot 51
Step 53, 81 columns
Monomial 52: S0100^52
Best monomial: S0100^51
Row 52: pivot 52
Step 54, 81 columns
Monomial 53: S0100^53
Best monomial: S0100^52
Row 53: pivot 53
Step 55, 81 columns
Monomial 54: S0100^54
Best monomial: S0100^53
Row 54: pivot 54
Step 56, 81 columns
Monomial 55: S0100^55
Best monomial: S0100^54
Row 55: pivot 55
Step 57, 81 columns
Monomial 56: S0100^56
Best monomial: S0100^55
Row 56: pivot 56
Step 58, 81 columns
Monomial 57: S0100^57
Best monomial: S0100^56
Row 57: pivot 57
Step 59, 81 columns
Monomial 58: S0100^58
Best monomial: S0100^57
Row 58: pivot 58
Step 60, 81 columns
Monomial 59: S0100^59
Best monomial: S0100^58
Row 59: pivot 59
Step 61, 81 columns
Monomial 60: S0100^60
Best monomial: S0100^59
Row 60: pivot 60
Step 62, 81 columns
Monomial 61: S0100^61
Best monomial: S0100^60
Row 61: pivot 61
Step 63, 81 columns
Monomial 62: S0100^62
Best monomial: S0100^61
Row 62: pivot 62
Step 64, 81 columns
Monomial 63: S0100^63
Best monomial: S0100^62
Row 63: pivot 63
Step 65, 81 columns
Monomial 64: S0100^64
Best monomial: S0100^63
Row 64: pivot 64
Step 66, 81 columns
Monomial 65: S0100^65
Best monomial: S0100^64
Row 65: pivot 65
Step 67, 81 columns
Monomial 66: S0100^66
Best monomial: S0100^65
Row 66: pivot 66
Step 68, 81 columns
Monomial 67: S0100^67
Best monomial: S0100^66
Row 67: pivot 67
Step 69, 81 columns
Monomial 68: S0100^68
Best monomial: S0100^67
Row 68: pivot 68
Step 70, 81 columns
Monomial 69: S0100^69
Best monomial: S0100^68
Row 69: pivot 69
Step 71, 81 columns
Monomial 70: S0100^70
Best monomial: S0100^69
Row 70: pivot 70
Step 72, 81 columns
Monomial 71: S0100^71
Best monomial: S0100^70
Row 71: pivot 71
Step 73, 81 columns
Monomial 72: S0100^72
Best monomial: S0100^71
Row 72: pivot 72
Step 74, 81 columns
Monomial 73: S0100^73
Best monomial: S0100^72
Row 73: pivot 73
Step 75, 81 columns
Monomial 74: S0100^74
Best monomial: S0100^73
Row 74: pivot 74
Step 76, 81 columns
Monomial 75: S0100^75
Best monomial: S0100^74
Row 75: pivot 75
Step 77, 81 columns
Monomial 76: S0100^76
Best monomial: S0100^75
Row 76: pivot 76
Step 78, 81 columns
Monomial 77: S0100^77
Best monomial: S0100^76
Row 77: pivot 77
Step 79, 81 columns
Monomial 78: S0100^78
Best monomial: S0100^77
Row 78: pivot 78
Step 80, 81 columns
Monomial 79: S0100^79
Best monomial: S0100^78
Row 79: pivot 79
Step 81, 81 columns
Monomial 80: S0100^80
Best monomial: S0100^79
Row 80: pivot 80
Step 82, 81 columns
Monomial 81: S0100^81
Best monomial: S0100^80
Row 81: pivot -1
New polynomial 0, leading monomial: S0100^81, 0.090
Polynomial: S0100^81 + 10944121435919637611123202872628637544274182200208017171849102093287904247804*S0100^80 + 9576106256429682909732802513550057851239909425182015025367964331626916216842*S0100^79 + 16416182153879456416684804308942956316411273300312025757773653139931856371700*S0100^78 + 1026011384617466026042800269308934769775704581269501609860853321245741023244*S0100^77 + 2565028461543665065107000673272336924439261453173754024652133303114352558083*S0100^76 + 15710799326954948523780379123793063662190476400689243400994316481575409418189*S0100^75 + 14046139815210649470265230557497815635813085937518416281346334178540881513274*S0100^74 + 8843619530616512864995688434624575043695523866215818887353568785219584929543*S0100^73 + 21214496255188187952675919823789363600443582761753082702443511148973282589185*S0100^72 + 6190600952645248184692649841073765337400239191448095649439369084509456171266*S0100^71 + 14151749597901158233944804424243414358965554604348320525783081160228213848293*S0100^70 + 18625193161504421179442908619920739283333245352421527461597521395176739944802*S0100^69 + 20453747554373444797795440818987697051139261419978470159634930725576968484153*S0100^68 + 11965738787214439612297241095557703004577229607253593682707612366612344804357*S0100^67 + 8757069714217159608286805118420397851036493496384136311313672772410767305078*S0100^66 + 3424434934913283017792054362455952075922277639929541878055111808090932389397*S0100^65 + 17676819738061353827142932199501545269455738488252471705787930561823367108678*S0100^64 + 5295590251339045602465586512960559494695678174009118129546526719888923591302*S0100^63 + 335540111936681576173978835221787410671311468183970203427621627568288276835*S0100^62 + 14065647983735426431624083871939338003874545748569176805394764268467589314268*S0100^61 + 10281153380574823195266518747507229404629308166554482651007861212437469998854*S0100^60 + 10241166828429167451490820039335275929581799915751854232410555689881435923654*S0100^59 + 16653093176233931414655522252741979499936257999240343917986388752685880196*S0100^58 + 485726429308942208557188634503574046719780960405611595729642013003407363329*S0100^57 + 889013062073208794923689078501108953804136472414040480203898158149930691331*S0100^56 + 5076911680089126828182424000508713182060860389375655286326566558263824387321*S0100^55 + 2414843579573739240064066609628864802082305500074480541460829199468722127251*S0100^54 + 18964885416890189916922247667946692229871819366391210241225476681782223934217*S0100^53 + 892100391002063482431966672800067823601625938669388606568199098050297388618*S0100^52 + 20809003342134998202524022255742961702071258362050626312959671646198209470333*S0100^51 + 12126858193940992570875202417689765956680462815576276093062707340853767120914*S0100^50 + 2790430798638335395867932547806476870477843047749735271294666659586754952872*S0100^49 + 11172599308971045553581595439232920273212332559495347920007850580394458623418*S0100^48 + 1077851800619967647820331464232926670933414342399506643314649765801762456639*S0100^47 + 11975342868138639238223691997375803734638928381286456322818532104912560407477*S0100^46 + 88705795543992109245397937237433573357134101032358465662526147069690876664*S0100^45 + 8545044700596037945306297472704151202415385756708892772178811955674951096982*S0100^44 + 3120781122507597586061926797461310489674362513382488147181772584659487040192*S0100^43 + 14429724371619972616267923445931842949127229055989892957516840172726551478422*S0100^42 + 17488010836496900606214452995086997390481921257695227290815864878538800484946*S0100^41 + 8825628401221041900882077537819919991372191028529961672332783223211065420606*S0100^40 + 8401667971310494900053374094065441642453045541782650344603446112936935920634*S0100^39 + 16398464107344322549336166096719094560284095980293012724833419375112502404718*S0100^38 + 16103928826849639596033567938236798148075581315582152817417819759835553667810*S0100^37 + 3588718481937717472652858646965927324418295444791832599866728456843429418300*S0100^36 + 8617882867153651758864205206335144861665541266095449509570746353875634902520*S0100^35 + 7167748282507099961429477068849083255779307439967064932672382212025989475985*S0100^34 + 21234107311271182693324942412720624472846817667719407779328558873317327200160*S0100^33 + 4270971452759195861375994980488715795987549109313963482493116699558287441892*S0100^32 + 8438724128405388446146080950277280779337135554642485060804977147532730166995*S0100^31 + 6126272239753426717560029526328259699465566723178057781254409643933493644349*S0100^30 + 21658240960375046483702385432163086367629237079474442294836549623576462842602*S0100^29 + 14568910085564615482473423780736579844181169452773053928622380223736129212121*S0100^28 + 9866502372036574829018516504112617698751375549952454130876611839083634656127*S0100^27 + 15708359231415896786922832798808603307272969471484594413145527053479593159310*S0100^26 + 21871541249665714942222004916020312876855446903325411833827584454458258081830*S0100^25 + 413462022040529113147997574131580802775028685656823461133312003514468354475*S0100^24 + 10308170240516737867129362141032914170648364926396833498274275703437275446974*S0100^23 + 3291034976096333116847011895024455045344232034594689240222819773458094066335*S0100^22 + 8682447914151108184348313619486640614389780040478351817001491766497794828075*S0100^21 + 14609743999514171855685960733019418291016630787176591335174743120314517724580*S0100^20 + 4744933363219446367042087235554267351364605206468057820680937973246879997954*S0100^19 + 5328985276587913486725518915022801916045588690110766766280751497082411972294*S0100^18 + 13362697922597161745391177855144118825590025635891576211656911453965657250534*S0100^17 + 7923665570507383462669485027125148518586238432719455084180389755286214962371*S0100^16 + 11793809059635782576413392808568824060682625068815323774188997771669864530654*S0100^15 + 6173342940468208906100489936732134467216075599281170960469338303588423775985*S0100^14 + 10090343156211811761371720794734144930781634484188869619551174045116771432343*S0100^13 + 4604509612289703430300803781328085566398578847479303233216132988107503068088*S0100^12 + 4139918473823324516324752421767590032706297271686127115679128217714412607998*S0100^11 + 3306711600953663808223961653942920717653442621307124041228114253420724052573*S0100^10 + 20889396502557030533821002264459830649653254859462935196273689646471627363408*S0100^9 + 13971879073170846010454627680985496143713858867902399508872239072908500008713*S0100^8 + 337591331427439408085399050771458754028258829841049746912292085042177385587*S0100^7 + 4466588601706724133953884288934236223202027521578514188267085778549101065266*S0100^6 + 14155356832787310499210682440238578280651773104279175469263445465097928085750*S0100^5 + 136169397555617878621851113818979402565168424422747458763627966012993541196*S0100^4 + 8976464442284081778115013670491806436708302257121017289404602682807000203801*S0100^3 + 18328371545580858069600360893990070401885840406231685324830755377090055559167*S0100^2 + 10248947834997198159022655747904734118772935683548471914600867079710561204471*S0100 + 3573187081118347090355899996216698507215275303458297854492506008908702764137
Step 83, 81 columns
Monomial 81: S0200
Best monomial: 1
Row 81: pivot -1
New polynomial 1, leading monomial: S0200, 0.090
Polynomial: S0200 + 13205944531494872673028963409631881038999959798684981623152767152238245988703*S0100^80 + 17784634700878772128742804729917616214022416782497182856436821501920232859609*S0100^79 + 9797438250079397264956878604113877099195096656919981339003281737162558171156*S0100^78 + 1782519128850188596688241168899853266405924628053308370191355990169053427520*S0100^77 + 17521454699329913044424624774371113433814425611711037832881860827983832298789*S0100^76 + 13758488112816418013855047633586174638493638923260644404073755075481382064282*S0100^75 + 12956443006626757814410873273117179222656030372301924739775337339502271108284*S0100^74 + 19873414081157173008518837281573767781469302398835243587316138187587206038290*S0100^73 + 18422955055072875367181656345636279591858756063861550318390594361333467025160*S0100^72 + 14276028580136964243014161562874627431703555879002437682940339117987723020016*S0100^71 + 14808374601897566228203048774561144349793636822915403333076198025712725537675*S0100^70 + 8471728330564039348050609707800262615061828893373539048078399127939780003889*S0100^69 + 441092820266203680422545721934802814941444182802413428561798552668621277361*S0100^68 + 2241101282591877320787208670224344738234272269624488026698871311085143661799*S0100^67 + 16693202745446917605688165954637972418998500008917924492522559472151456372451*S0100^66 + 14489865421540939975746296137203614093069878268095608168128866351524823443594*S0100^65 + 15285440821197282402095384405378141932885437404177284604322407691127223469748*S0100^64 + 17827886977609135387290188018935318787398171466237472599390086402099688625592*S0100^63 + 12553609011501066872646390444859879493282893105449914381962861222909707321307*S0100^62 + 16934928098957035296963600416850402351399815555398838014696648952507290839530*S0100^61 + 18350321044332468169628665678235823851965359417680500564685007565622202502318*S0100^60 + 3566965697727545575122580703253720579382587379240956790801737201674761174770*S0100^59 + 1108476089499397404807996920197778952831174650483248349555892885436952311461*S0100^58 + 2545847702644645271231053516780056312180802270194505723545258175046876606217*S0100^57 + 8856015043250521500683510967978387708436230796645852691005179814953985530978*S0100^56 + 8113440223089190516668087852696238888217692579923866626500891969091778818995*S0100^55 + 9774918531039923323969882967640710000293976528981033069007641032320716116294*S0100^54 + 7766145391047499586137250103171580877964765787484732780774745117577344953930*S0100^53 + 1482483920909722842873408463167253172869649308248416891045166328860777042091*S0100^52 + 3266351634288977399870531433149687866653497383572961322904462301919195040290*S0100^51 + 14104243345872630149706425469637161187661355614521708884240388164224979933468*S0100^50 + 14614264651059142932133033695629601815125565403835598937494582789910187766744*S0100^49 + 21378409296757158932844569223985155420135881225089751011158478502470576188970*S0100^48 + 10303697737032406548063740925733682615832413179411860734628294869933041493099*S0100^47 + 491021374187918904300255288040298539827507801787110567649074683626880449831*S0100^46 + 15172546143968464501502758318154708068019656649182967653328417005735452022551*S0100^45 + 9353666610115946913697274741581412131324833168547481507970119571022230655996*S0100^44 + 12255970222031523655879749228439327100843669038856735325240271522654838843105*S0100^43 + 10287631548033238171186673406168820884894628037417870008802748551819325645603*S0100^42 + 7356661202894296103995804146071453914563300863775303061458176350485921807149*S0100^41 + 2716127312924964794488627403374089574887369812740071526915523344823715776478*S0100^40 + 4933254095829612882600292287617936356297830090940264762342105422870380045249*S0100^39 + 18323817956381807500324770352052826356884778053151774963805873298466059667183*S0100^38 + 1000601002280124614979950987198544505598219986978860585245984674906411807336*S0100^37 + 17539480091337847464390303228359719160075939383216492664876745967669264769737*S0100^36 + 18911015348592200555381393063004540202806156270287688923682446940777716662627*S0100^35 + 7142294262706099717698000251957061429815024977833571522344933178364434813170*S0100^34 + 14819459472339847149942178793499210809562660740495734258223743902554951362145*S0100^33 + 20252652240985520770005339216913629852735280775703414978445173244185194263166*S0100^32 + 6044957842678171500790958943965178258658388009701972713107825931433442522450*S0100^31 + 18725618157035573512048436202399278718543314826990907061007339305207147333230*S0100^30 + 8430702308751321591385102412620534465824793822723197691535955197345520310822*S0100^29 + 16288478580831530128196419087868267344515333499730259706088860896124584999158*S0100^28 + 16639409483083439284643494777978762239265059849482155002481895707554065410001*S0100^27 + 17948702620769409352253132975450580907738742951117858000865441806461225383295*S0100^26 + 9620731279533403833931740293935539472881480491171959304657170031494164937388*S0100^25 + 16194031507285025875132816849552989854406858069171616458118711015689470039179*S0100^24 + 18061639637719248800474871329592129735896286886343493005170212520191142544465*S0100^23 + 20257501662785184508337964537729695759688083183221285977597050505945539327178*S0100^22 + 945556869292118052652596955096642250833032453753471384521107642319323484650*S0100^21 + 20332015975928576940802893929009482328244103873512861796149366643969072199902*S0100^20 + 10499783479331157492109547776503650179712317917365522338730536222175611398885*S0100^19 + 5247387641074828378434257600532004149658766035864537137320735952288041835575*S0100^18 + 13672964422498963719775422189789066372087180286500231216704251412852563144083*S0100^17 + 9409473708643069072424416455499748922292195210940824811875829784879129513015*S0100^16 + 13146694946528495141907325497458153018393935168323559921362006581302871381138*S0100^15 + 9826949484358485419229101013196680673935737446615183625341380222058187574132*S0100^14 + 18681676966685554636316211030169534505286840772329063519956278509670075275136*S0100^13 + 9655353228569140921961232477463397777558715168719418160062206681962790705170*S0100^12 + 524059654935850695895404263450271000792237537087375372094354436063669872309*S0100^11 + 734167276687371830245028128656359133879337281615854256559631695205802297060*S0100^10 + 3581608196111302753013461838447858824014787249390731068430877998579899523185*S0100^9 + 5535132940274862043910754485038504916598078378285573173593192522482178411001*S0100^8 + 17723633706618395574376409764778656674421317952037907822054087805748116275846*S0100^7 + 19509651509180676944607210167089800595406144765805696436049893519641178276309*S0100^6 + 7116926070746646911433487394386979156381119147406285423163033629735826479886*S0100^5 + 21204603993740866772577141292815094477621801391542512847634758871691307646503*S0100^4 + 2027041075988704978369195051269848329662933728636285002770145379446258984881*S0100^3 + 11821502237793763944537107718727819060896618572053085156128152169037748297034*S0100^2 + 4612359924627552389596696566376406104115093112033947565218236770069975482659*S0100 + 1731726030626582104082975327673684035224339051764430563423333602785698784076
Step 84, 81 columns
Monomial 81: Y0000
Best monomial: 1
Row 81: pivot -1
New polynomial 2, leading monomial: Y0000, 0.090
Polynomial: Y0000 + 1784581196101278075266241856139724944323508478150250416352711190807145795743*S0100^80 + 3527824025096742153911784283196440241402056319360681682758594574782760902232*S0100^79 + 11570389374910623472483806004510422152249396135295521294612208015572542455274*S0100^78 + 5058842228689254644861247238600419259556433535620968152328280313017909791564*S0100^77 + 5706505853561429297857939910314597482495415671155204910145480375669776334842*S0100^76 + 11403767170233601682548047211523839934823703988009283999883430367971653738030*S0100^75 + 465237882018785009419187830101734807964579208495419324514580478377071511864*S0100^74 + 13761902569881301088702364801713953153937178231977565726460917224166581006641*S0100^73 + 19467815293329260313338863094405272083469138922252283950834238967469264360088*S0100^72 + 19167774607121465573054670045764012260218945455556085457290560286920288338345*S0100^71 + 10966706360821131319040952226903552020668040535907610999627898416436085251894*S0100^70 + 6764861264145961675489287528420718083960397316136914569405301080961247662299*S0100^69 + 20739474466476005283242255749330952183891237699110511396554806347230564041483*S0100^68 + 19188725570603202818349886729599184151512472140937570811947500810700231845234*S0100^67 + 8918628913468600229112955329519946112136805440715538164974202377069231729434*S0100^66 + 10333852735888199467759850565462630520105256243167573699196163622828802115187*S0100^65 + 2020723236704171564037967053013480914434236749961809547111188405293367774898*S0100^64 + 17574481767636285705466701242271564320243962934097362723769266315606012037679*S0100^63 + 16502850204684076378525841069777441725209429518713480017763495214773752633574*S0100^62 + 18438679754127054333776587583160398590310919999272249589740614905236767379850*S0100^61 + 7066194590489147031262338041847696327070300686784547715526495755503137277253*S0100^60 + 1296937436489806045069388826461272644891332529893039581225423519712586078778*S0100^59 + 9600813065607115769417002961909033913345837958164597318169761751281831203000*S0100^58 + 8719367220766798705846500929298726948713788988307658432946944659111244805432*S0100^57 + 5297018284192554580174362712075001331260386224887465017982826715686158238904*S0100^56 + 10657502935828994995316013353369868485390312279887044243150185020861087231310*S0100^55 + 3454069612797681095023585244326940838194211104262808027032964872494726577723*S0100^54 + 1131529667304585530232687373342873509548211740858817950097543990855084774229*S0100^53 + 21035457678679180452488067504089918217641162864260018824365682232228220172153*S0100^52 + 8403357657244287175183780373426732528626050714268279838249563055892252286554*S0100^51 + 17474817435736051112335252510740668802855448929942064511757146387718224465508*S0100^50 + 9038528709713467407906721098770684319115153017582197416014699914482161746517*S0100^49 + 8382919469376118549604173674609651730862522843142494869472432651810192922144*S0100^48 + 3094598833603142696426218258841234256413614555592607557874427588818062160871*S0100^47 + 10835866554499694687017579622548465765720447734111127713644927544269527920715*S0100^46 + 9281347862376373441497605003885791268495289486165320190217118627701620924760*S0100^45 + 8749779986403053371203592330793274074732746568832842071482859296474321616722*S0100^44 + 14351571536429074027927306598886899311710009577336736305780162254245417289174*S0100^43 + 19107518370587933093855005861131020433913760607316146042311697489314513473301*S0100^42 + 8003515590018683843726235973864632896221881098688054436009709928836740183597*S0100^41 + 5961265112565003244740737209306822536365016072415436046872588071226159485006*S0100^40 + 8617493226194539990574448935461474743589109398913646219237936846024970734871*S0100^39 + 17547670901646430476522888884669359901334480182058381147891832557830595562916*S0100^38 + 15259800992267056617455134451390124720686374057673539433961908096545261355160*S0100^37 + 9316551125398161751710325538537680028372808237719299048837626158347037868483*S0100^36 + 10326814198163410124491181070777090895087670062781571026421566742981813722734*S0100^35 + 13172362628189305982432864932002696793617828037022098707279945313909227975419*S0100^34 + 11872226206804688216924190507360678299799887749799863981778644610961243648602*S0100^33 + 8898053747696336028760903086155950736122460173400387245989416667205558879811*S0100^32 + 21428741398477419476836147135239220193633545714774161353222008554799250092854*S0100^31 + 497220237389226354682981383805249291504128047661517507760316701298796334553*S0100^30 + 9427922885791811722154485863397329006284799077267742326025062487052444248708*S0100^29 + 13926238579601627727933817052040587319674206631096185023864462353892154864722*S0100^28 + 3881681489126300976862714970029386213026008280645301676135960102721110874715*S0100^27 + 17965879769433472006314447464819991557446490119251645075800981407472288339597*S0100^26 + 11781397858557826187459136415974816368005094805453575937858726085329525689311*S0100^25 + 20655457798196215631497187652057237999930078621102161610378742230337445039961*S0100^24 + 2730338591823377468280548446174975226751068921662980564027839259998249274324*S0100^23 + 13262498771092001020069252408501400808552293259721011508720142152881694322869*S0100^22 + 17358875997437176727442495196021724204656831948022169680427358505640602771055*S0100^21 + 3867977154005989515201055581544102361872327107647933793624549937818226397928*S0100^20 + 3339454191724230266766642390587640614841569257518030917869491454252460685668*S0100^19 + 6918299318930834848507537821012077007024493930953738652056018229409085050360*S0100^18 + 7019018083921639413985968897512201974001541562583401583475837476051168528624*S0100^17 + 2078182559676739274776245161800931408164308038883755937632929892111276580088*S0100^16 + 9974411608243834162770503243713688267616628621483490994137654345849917545012*S0100^15 + 13139077764449103867883975991715993397067909129568176658723483486275152751142*S0100^14 + 7610193103979447296788582004439646919065535355326293084071736300841412536294*S0100^13 + 12173017258843938155880800680233327687404187987354203732142422613356095425216*S0100^12 + 1784788571539805028640672561019166226869094273840592578360463068391346678639*S0100^11 + 2775612792121789980340563804101258275992452805458217738807253715698743519500*S0100^10 + 17858120753938108683125194041742850187140056403329181989639606855806026942993*S0100^9 + 9327458771786988628868213889641712533740433792742143390045385765619068030971*S0100^8 + 16284345802056988400901462200073102032842969298554759575644341112737420324250*S0100^7 + 12015178334261293072031363972349539559715786124324062791711670564153323034546*S0100^6 + 3930346734622624006245305802574782186190097713311205746497408442771924729881*S0100^5 + 15247846384918611290851448260500396841479027497951064707485774714234220646515*S0100^4 + 1668529954676297111126208272802943971652601069021888189508672119222108069112*S0100^3 + 19325702232080603931664992689418070987551344359789615346370672962436280713322*S0100^2 + 18727882967543329060784886617590845516764086787608845955815624741174520219797*S0100 + 6284469431691073156001664668096280711963016804704941596116759829685487893339
Total FGLM time: 0.090
Time: 0.090
unideg = 81
----------------------------------------------------------------------------------------------------
Starting UNIV SOLVING computation... (r=2)
Time: 0.230
nsols = 3
----------------------------------------------------------------------------------------------------
Starting MULTIPLICITY computation... (r=2)
nsols_mult = 3
====================================================================================================
n_r: 3, n_v: 4, n_e: 4, mdeg: 7
degs = [7, 7, 7, 4]
Multivariate Polynomial Ring in Y0000, S0300, S0200, S0100 over Finite Field of size 21888242871839275222246405745257275088548364400416034343698204186575808495617
----------------------------------------------------------------------------------------------------
Starting GB computation... (r=3)
********************
FAUGERE F4 ALGORITHM
********************
Coefficient ring: GF(21888242871839275222246405745257275088548364400416034343698204186575808495617)
Rank: 4
Order: Graded Reverse Lexicographical
NEW hash table
Matrix kind: Generic finite field
Generic field
Datum size: 4
No queue sort
Initial length: 4
Inhomogeneous
Initial queue setup time: 0.000
Initial queue length: 3
*******
STEP 1
Basis length: 4, queue length: 3, step degree: 10, num pairs: 3
Basis total mons: 83, average length: 20.750
Number of pair polynomials: 3, at 126 column(s), 0.000
Average length for reductees: 23.00 [3], reductors: 21.14 [58]
Symbolic reduction time: 0.000, column sort time: 0.000
3 + 58 = 61 rows / 286 columns out of 1001 (28.571%)
Density: 7.4229% / 11.525% (21.23/r), total: 1295 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [3]
After ech memory: 32.1MB (=max)
Num new polynomials: 3 (100.0%), min deg: 8 [1], av deg: 8.7
Degree counts: 8:1 9:2
Queue insertion time: 0.000
New max step: 1, time: 0.000
Step 1 time: 0.000, [0.003], mat/total: 0.000/0.000, mem: 32.1MB (=max)
*******
STEP 2
Basis length: 7, queue length: 10, step degree: 9, num pairs: 2
Basis total mons: 404, average length: 57.714
Number of pair polynomials: 2, at 190 column(s), 0.000
Average length for reductees: 103.00 [2], reductors: 22.69 [32]
Symbolic reduction time: 0.000, column sort time: 0.000
2 + 32 = 34 rows / 214 columns out of 715 (29.930%)
Density: 12.809% / 17.95% (27.412/r), total: 932 (0.0MB)
Before ech memory: 32.1MB (=max)
Row sort time: 0.000
0.000 + 0.000 = 0.000 [1]
Number of unused reductors: 1
After ech memory: 32.1MB (=max)
Num new polynomials: 1 (50.0%), min deg: 9 [1], av deg: 9.0
Degree counts: 9:1
Queue insertion time: 0.000
Step 2 time: 0.000, [0.002], mat/total: 0.000/0.000, mem: 32.1MB (=max)