Skip to content

Latest commit

 

History

History
77 lines (73 loc) · 4.43 KB

howdoi.rst

File metadata and controls

77 lines (73 loc) · 4.43 KB
.. currentmodule:: xarray

How do I ...

How do I... Solution
add a DataArray to my dataset as a new variable my_dataset[varname] = my_dataArray or :py:meth:`Dataset.assign` (see also :ref:`dictionary_like_methods`)
add variables from other datasets to my dataset :py:meth:`Dataset.merge`
add a new dimension and/or coordinate :py:meth:`DataArray.expand_dims`, :py:meth:`Dataset.expand_dims`
add a new coordinate variable :py:meth:`DataArray.assign_coords`
change a data variable to a coordinate variable :py:meth:`Dataset.set_coords`
change the order of dimensions :py:meth:`DataArray.transpose`, :py:meth:`Dataset.transpose`
reshape dimensions :py:meth:`DataArray.stack`, :py:meth:`Dataset.stack`, :py:meth:`Dataset.coarsen.construct`, :py:meth:`DataArray.coarsen.construct`
remove a variable from my object :py:meth:`Dataset.drop_vars`, :py:meth:`DataArray.drop_vars`
remove dimensions of length 1 or 0 :py:meth:`DataArray.squeeze`, :py:meth:`Dataset.squeeze`
remove all variables with a particular dimension :py:meth:`Dataset.drop_dims`
convert non-dimension coordinates to data variables or remove them :py:meth:`DataArray.reset_coords`, :py:meth:`Dataset.reset_coords`
rename a variable, dimension or coordinate :py:meth:`Dataset.rename`, :py:meth:`DataArray.rename`, :py:meth:`Dataset.rename_vars`, :py:meth:`Dataset.rename_dims`,
convert a DataArray to Dataset or vice versa :py:meth:`DataArray.to_dataset`, :py:meth:`Dataset.to_dataarray`, :py:meth:`Dataset.to_stacked_array`, :py:meth:`DataArray.to_unstacked_dataset`
extract variables that have certain attributes :py:meth:`Dataset.filter_by_attrs`
extract the underlying array (e.g. NumPy or Dask arrays) :py:attr:`DataArray.data`
convert to and extract the underlying NumPy array :py:attr:`DataArray.to_numpy`
convert to a pandas DataFrame :py:attr:`Dataset.to_dataframe`
sort values :py:attr:`Dataset.sortby`
find out if my xarray object is wrapping a Dask Array :py:func:`dask.is_dask_collection`
know how much memory my object requires :py:attr:`DataArray.nbytes`, :py:attr:`Dataset.nbytes`
Get axis number for a dimension :py:meth:`DataArray.get_axis_num`
convert a possibly irregularly sampled timeseries to a regularly sampled timeseries :py:meth:`DataArray.resample`, :py:meth:`Dataset.resample` (see :ref:`resampling` for more)
apply a function on all data variables in a Dataset :py:meth:`Dataset.map`
write xarray objects with complex values to a netCDF file :py:func:`Dataset.to_netcdf`, :py:func:`DataArray.to_netcdf` specifying engine="h5netcdf", invalid_netcdf=True
make xarray objects look like other xarray objects :py:func:`~xarray.ones_like`, :py:func:`~xarray.zeros_like`, :py:func:`~xarray.full_like`, :py:meth:`Dataset.reindex_like`, :py:meth:`Dataset.interp_like`, :py:meth:`Dataset.broadcast_like`, :py:meth:`DataArray.reindex_like`, :py:meth:`DataArray.interp_like`, :py:meth:`DataArray.broadcast_like`
Make sure my datasets have values at the same coordinate locations xr.align(dataset_1, dataset_2, join="exact")
replace NaNs with other values :py:meth:`Dataset.fillna`, :py:meth:`Dataset.ffill`, :py:meth:`Dataset.bfill`, :py:meth:`Dataset.interpolate_na`, :py:meth:`DataArray.fillna`, :py:meth:`DataArray.ffill`, :py:meth:`DataArray.bfill`, :py:meth:`DataArray.interpolate_na`
extract the year, month, day or similar from a DataArray of time values obj.dt.month for example where obj is a :py:class:`~xarray.DataArray` containing datetime64 or cftime values. See :ref:`dt_accessor` for more.
round off time values to a specified frequency obj.dt.ceil, obj.dt.floor, obj.dt.round. See :ref:`dt_accessor` for more.
make a mask that is True where an object contains any of the values in a array :py:meth:`Dataset.isin`, :py:meth:`DataArray.isin`
Index using a boolean mask :py:meth:`Dataset.query`, :py:meth:`DataArray.query`, :py:meth:`Dataset.where`, :py:meth:`DataArray.where`
preserve attrs during (most) xarray operations xr.set_options(keep_attrs=True)