-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodeling_rwkv.py
687 lines (590 loc) · 30.6 KB
/
modeling_rwkv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
"""
Full definition of a RWKV Language Model, all of it in this single file.
References:
1) the official RWKV PyTorch implementation released by Bo Peng:
https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4neo/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py
"""
import math,time
import os
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
PREV_X_TIME = 0
NUM_STATE = 1
DEN_STATE = 2
MAX_STATE = 3
PREV_X_CHANNEL = 4
# copied from nanoGPT
class LayerNorm(nn.Module):
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
# learn from GPT-4
from unittest.mock import patch
class CudaNotAvailable:
def __enter__(self):
self.patcher = patch("torch.cuda.is_available", return_value=False)
self.patcher.start()
def __exit__(self, exc_type, exc_value, traceback):
self.patcher.stop()
# https://github.com/BlinkDL/RWKV-LM/blob/cca1b5e8e597cf40675882bb10b46287c844e35c/RWKV-v4/src/model.py#L21
class L2Wrap(torch.autograd.Function):
@staticmethod
def forward(ctx, loss, y):
ctx.save_for_backward(y)
return loss
@staticmethod
def backward(ctx, grad_output):
y = ctx.saved_tensors[0]
# to encourage the logits to be close to 0
factor = 1e-4 / (y.shape[0] * y.shape[1])
maxx, ids = torch.max(y, -1, keepdim=True)
gy = torch.zeros_like(y)
gy.scatter_(-1, ids, maxx * factor)
return (grad_output, gy)
class ChannelMixing(nn.Module):
def __init__(self,config,layer_id):
super().__init__()
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.layer_id = layer_id
n_embd = config.n_embd
intermediate_size = (
config.intermediate_size if config.intermediate_size is not None else 4 * n_embd
)
## Learnable Matrix
self.key_proj = nn.Linear(n_embd,intermediate_size,bias=False)
self.value_proj = nn.Linear(intermediate_size,n_embd,bias=False)
self.receptance_proj = nn.Linear(n_embd,n_embd,bias=False)
## Learnable Vector
self.time_mix_key = nn.Parameter(torch.empty(1, 1, n_embd))
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, n_embd))
def forward(self,x,state=None):
# x = (Batch,Time,Channel)
if state is not None:
prev_x = state[self.layer_id,:,[PREV_X_CHANNEL],:]
state[self.layer_id,:,[PREV_X_CHANNEL],:] = x
else:
prev_x = self.time_shift(x)
## R
receptance = x * self.time_mix_receptance + prev_x * (1 - self.time_mix_receptance)
receptance = self.receptance_proj(receptance)
receptance = F.sigmoid(receptance)
# K
key = x * self.time_mix_key + prev_x * (1 - self.time_mix_key)
key = self.key_proj(key)
# V
value = self.value_proj(torch.square(torch.relu(key)))
## output
out = receptance * value
return out, state
class TimeMixing(nn.Module):
def __init__(self,config,layer_id):
super().__init__()
self.config = config
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.layer_id = layer_id
n_embd = config.n_embd
attn_sz = n_embd
## learnable matrix
self.key_proj = nn.Linear(n_embd, attn_sz, bias=False)
self.value_proj = nn.Linear(n_embd, attn_sz, bias=False)
self.receptance_proj = nn.Linear(n_embd, attn_sz, bias=False)
self.output_proj = nn.Linear(attn_sz, n_embd, bias=False)
## learnable vector
self.time_decay = nn.Parameter(torch.empty(attn_sz))
self.time_first = nn.Parameter(torch.empty(attn_sz))
self.time_mix_key = nn.Parameter(torch.empty(1, 1, n_embd))
self.time_mix_value = nn.Parameter(torch.empty(1, 1, n_embd))
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, n_embd))
def forward(self,x,state=None):
# x = (Batch,Time,Channel)
if state is not None:
prev_x = state[self.layer_id,:,[PREV_X_TIME],:]
state[self.layer_id,:,[PREV_X_TIME],:] = x
else:
prev_x = self.time_shift(x)
# K
key = x * self.time_mix_key + prev_x * (1 - self.time_mix_key)
key = self.key_proj(key)
# V
value = x * self.time_mix_value + prev_x * (1 - self.time_mix_value)
value = self.value_proj(value)
# R
receptance = x * self.time_mix_receptance + prev_x * (1 - self.time_mix_receptance)
receptance = self.receptance_proj(receptance)
receptance = F.sigmoid(receptance)
# WKV
wkv, state = self.wkv_function(key,value,use_customized_cuda_kernel=self.config.use_customized_cuda_kernel,state=state)
# RWKV
rwkv = receptance * wkv
rwkv = self.output_proj(rwkv)
return rwkv, state
def wkv_function(self,key,value,use_customized_cuda_kernel,state=None):
## essentially, this customized cuda kernel delivers a faster for loop across time steps
## only for training and evaluating loss and ppl
if state is None and use_customized_cuda_kernel:
B, T, C = key.size()
return WKVKernel.apply(B, T, C, self.time_decay, self.time_first, key, value), None
## raw wkv function (from Huggingface Implementation)
## only for generation (because using raw pytorch for loop to train the model would be super super slow)
else:
_, seq_length, _ = key.size()
output = torch.zeros_like(key)
debug_mode = False
if state is None:
## only for debug purpose when use_customized_cuda_kernel=False and state is None
debug_mode = True
num_state = torch.zeros_like(key[:, 0], dtype=torch.float32)
den_state = torch.zeros_like(key[:, 0], dtype=torch.float32)
max_state = torch.zeros_like(key[:, 0], dtype=torch.float32) - 1e38
else:
num_state = state[self.layer_id,:,NUM_STATE,:]
den_state = state[self.layer_id,:,DEN_STATE,:]
max_state = state[self.layer_id,:,MAX_STATE,:]
time_decay = -torch.exp(self.time_decay)
for current_index in range(seq_length):
current_key = key[:, current_index].float()
current_value = value[:, current_index]
# wkv computation at time t
max_for_output = torch.maximum(max_state, current_key + self.time_first)
e1 = torch.exp(max_state - max_for_output)
e2 = torch.exp(current_key + self.time_first - max_for_output)
numerator = e1 * num_state + e2 * current_value
denominator = e1 * den_state + e2
output[:, current_index] = (numerator / denominator).to(output.dtype)
# Update state for next iteration
max_for_state = torch.maximum(max_state + time_decay, current_key)
e1 = torch.exp(max_state + time_decay - max_for_state)
e2 = torch.exp(current_key - max_for_state)
num_state = e1 * num_state + e2 * current_value
den_state = e1 * den_state + e2
max_state = max_for_state
if debug_mode:
return output, None
else:
state[self.layer_id,:,NUM_STATE,:] = num_state
state[self.layer_id,:,DEN_STATE,:] = den_state
state[self.layer_id,:,MAX_STATE,:] = max_state
return output, state
class Block(nn.Module):
def __init__(self, config,layer_id):
super().__init__()
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
self.attn = TimeMixing(config,layer_id)
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
self.ffn = ChannelMixing(config,layer_id)
def forward(self, x, state = None):
# state: [batch_size, 5 , n_embd]
# time mixing
residual = x
x,state = self.attn(self.ln_1(x),state=state)
x = x + residual
# channel mixing
residual = x
x, state = self.ffn(self.ln_2(x),state=state)
x = x + residual
return x, state
@dataclass
class RWKVConfig:
block_size: int = 1024 # same as nanoGPT
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
n_layer: int = 12
n_embd: int = 768
bias: bool = True # bias in LayerNorms, in RWKV, all bias in Linear is False
intermediate_size: int = None # intermediate_size in channel-mixing
use_customized_cuda_kernel: bool = True
dtype: str = "float16" ## bfloat16 is not supported in V100
rescale_every: int = 6 ## mysterious trick, only applies when inference
class RWKV(nn.Module):
def __init__(self, config,lr_init=0.0008):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.lr_init = lr_init ## used to initialize embedding parameters
self.rwkv = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
ln_p = LayerNorm(config.n_embd, bias=config.bias),
h = nn.ModuleList([Block(config,layer_id) for layer_id in range(config.n_layer)]),
ln_f = LayerNorm(config.n_embd, bias=config.bias),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.apply(self._init_weights)
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
if self.config.use_customized_cuda_kernel:
## load customized cuda kernel
self.load_cuda_kernel(config.dtype)
def get_num_params(self, non_embedding=True):
"""
Return the number of parameters in the model.
For non-embedding count (default), the token embeddings get subtracted.
"""
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.rwkv.wte.weight.numel()
return n_params
def _init_weights(self, module):
## initialize Vector Parameters in TimeMixing
if isinstance(module,TimeMixing):
layer_id = module.layer_id
n_layer = self.config.n_layer
n_embd = self.config.n_embd
attn_sz = n_embd
with torch.no_grad():
ratio_0_to_1 = layer_id / (n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / n_layer) # 1 to ~0
ddd = torch.ones(1, 1, n_embd)
for i in range(n_embd):
ddd[0, 0, i] = i / n_embd
decay_speed = torch.ones(attn_sz)
for h in range(attn_sz):
decay_speed[h] = -5 + 8 * (h / (attn_sz - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
module.time_decay = nn.Parameter(decay_speed)
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(attn_sz)]) * 0.5
module.time_first = nn.Parameter(torch.ones(attn_sz) * math.log(0.3) + zigzag)
module.time_mix_key = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
module.time_mix_value = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
module.time_mix_receptance = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
## initialize Vector Parameters in ChannelMixing
elif isinstance(module,ChannelMixing):
layer_id = module.layer_id
n_layer = self.config.n_layer
n_embd = self.config.n_embd
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / n_layer) # 1 to ~0
ddd = torch.ones(1, 1, n_embd)
for i in range(n_embd):
ddd[0, 0, i] = i / n_embd
module.time_mix_key = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
module.time_mix_receptance = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
## initialize Linear Layer and Embedding Layer
elif isinstance(module,(nn.Embedding,nn.Linear)):
weight = module.weight
shape = weight.shape
gain = 1.0
scale = 1.0
## get the current name of the parameters
for _name,_parameters in self.named_parameters():
if id(_parameters) == id(weight):
current_module_name = _name
# print(current_module_name)
## Embedding
if isinstance(module, nn.Embedding):
gain = math.sqrt(max(shape[0], shape[1]))
scale = -1 * self.lr_init
## Linear
elif isinstance(module,nn.Linear):
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
## initialize some matrix to be all ZEROS
for name in [".attn.key_proj.", ".attn.receptance_proj.", ".attn.output_proj.",
".ffn.value_proj.", ".ffn.receptance_proj."]:
if name in current_module_name:
scale = 0
if current_module_name == 'lm_head.weight':
scale = 0.5
if scale == 0:
nn.init.zeros_(weight)
elif scale < 0:
nn.init.uniform_(weight, a=scale, b=-scale)
else:
nn.init.orthogonal_(weight, gain=gain * scale)
def forward(self, idx, targets=None, state=None, return_state=False):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
x = self.rwkv.wte(idx)
x = self.rwkv.ln_p(x)
# x = self.rwkv.drop(x)
for block_idx,block in enumerate(self.rwkv.h):
x, state = block(x,state)
if state is not None: ## in generation mode
if (
self.config.rescale_every > 0
and (block_idx + 1) % self.config.rescale_every == 0
):
x = x/2
x = self.rwkv.ln_f(x)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
if self.training:
loss = L2Wrap.apply(loss,logits) # from RWKV-LM
else:
# inference-time mini-optimization: only forward the lm_head on the very last position
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
loss = None
if return_state:
return logits, loss, state
else:
return logits, loss
def crop_block_size(self, block_size):
assert block_size <= self.config.block_size
self.config.block_size = block_size
@classmethod
def from_pretrained(cls, model_type,use_customized_cuda_kernel=True,dtype="float16"):
assert model_type in {
'RWKV/rwkv-4-169m-pile',
"RWKV/rwkv-4-430m-pile",
"RWKV/rwkv-4-1b5-pile",
"RWKV/rwkv-4-3b-pile",
"RWKV/rwkv-4-7b-pile",
"RWKV/rwkv-raven-7b",
"RWKV/rwkv-raven-1b5",
"RWKV/rwkv-raven-3b",
"RWKV/rwkv-4-14b-pile",
}
print("loading weights from pretrained RWKV: %s" % model_type)
# init a huggingface/transformers model
from transformers import RwkvForCausalLM,RwkvConfig
hf_config = RwkvConfig.from_pretrained(model_type)
with CudaNotAvailable(): ## avoid HF load kernel
hf_model = RwkvForCausalLM.from_pretrained(model_type)
# create a from-scratch initialized RWKV model
config = {
"vocab_size":50277,
"n_layer":hf_config.num_hidden_layers,
"n_embd":hf_config.hidden_size,
"intermediate_size":hf_config.intermediate_size,
"use_customized_cuda_kernel":use_customized_cuda_kernel,
"dtype": dtype,
}
config = RWKVConfig(**config)
model = RWKV(config)
num_layers = config.n_layer
## create mapping from the parameter name in RWKV to that of HF-RWKV
mapping = {
"rwkv.wte.weight":"rwkv.embeddings.weight",
"rwkv.ln_p.weight":"rwkv.blocks.0.pre_ln.weight",
"rwkv.ln_p.bias":"rwkv.blocks.0.pre_ln.bias",
"rwkv.ln_f.weight":"rwkv.ln_out.weight",
"rwkv.ln_f.bias":"rwkv.ln_out.bias",
"lm_head.weight":"head.weight",
**{f"rwkv.h.{layer_id}.ln_{norm_id}.weight":f"rwkv.blocks.{layer_id}.ln{norm_id}.weight" for layer_id in range(num_layers) for norm_id in [1,2]},
**{f"rwkv.h.{layer_id}.ln_{norm_id}.bias":f"rwkv.blocks.{layer_id}.ln{norm_id}.bias" for layer_id in range(num_layers) for norm_id in [1,2]},
**{f"rwkv.h.{layer_id}.attn.{_type}":f"rwkv.blocks.{layer_id}.attention.{_type}" for layer_id in range(num_layers) for _type in ["time_decay","time_first",'time_mix_key','time_mix_value',"time_mix_receptance"]},
**{f"rwkv.h.{layer_id}.attn.{_type}_proj.weight":f"rwkv.blocks.{layer_id}.attention.{_type}.weight" for layer_id in range(num_layers) for _type in ["key","value",'receptance',"output"]},
**{f"rwkv.h.{layer_id}.ffn.{_type}":f"rwkv.blocks.{layer_id}.feed_forward.{_type}" for layer_id in range(num_layers) for _type in ['time_mix_key',"time_mix_receptance"]},
**{f"rwkv.h.{layer_id}.ffn.{_type}_proj.weight":f"rwkv.blocks.{layer_id}.feed_forward.{_type}.weight" for layer_id in range(num_layers) for _type in ["key","value",'receptance']},
}
mapped_set = [mapping[x] for x in model.state_dict().keys()]
assert set(mapped_set) == set(hf_model.state_dict().keys())
sd = model.state_dict()
hf_sd = hf_model.state_dict()
for k1,k2 in mapping.items():
assert sd[k1].shape == hf_sd[k2].shape,(k1,k2)
sd[k1].copy_(hf_sd[k2])
return model
# def configure_optimizers(self,weight_decay,learning_rate,betas,device_type):
# # lr_1x = set()
# # lr_2x = set()
# # lr_3x = set()
# # for n, p in self.named_parameters():
# # if "time_mix" in n:lr_1x.add(n)
# # elif "time_decay" in n:lr_2x.add(n)
# # elif "time_first" in n:lr_3x.add(n)
# # else:lr_1x.add(n)
# # lr_1x = sorted(list(lr_1x))
# # lr_2x = sorted(list(lr_2x))
# # lr_3x = sorted(list(lr_3x))
# # param_dict = {n: p for n, p in self.named_parameters()}
# # optim_groups = [
# # {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
# # {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
# # {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
# # ]
# optim_groups = [{"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},]
# fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
# use_fused = fused_available and device_type == 'cuda'
# extra_args = dict(fused=True) if use_fused else dict()
# optimizer = torch.optim.Adam(optim_groups, lr=learning_rate, betas=betas, eps=1e-8, weight_decay=weight_decay,amsgrad=False,**extra_args)
# return optimizer
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
# first estimate the number of flops we do per iteration.
# see RWKV paper Appendix C as ref: https://arxiv.org/abs/2305.13048
cfg = self.config
L, V, D = cfg.n_layer, cfg.vocab_size, cfg.n_embd
# Note there is a typo in the RWKV paper. Forward pass is 2*fn, forward
# and backward is 6*fn.
flops_per_token = 2*(V*D + 13*(V**2)*L)
flops_per_fwdbwd = 3*flops_per_token
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0/dt) # per second
# https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
if cfg.dtype == 'bfloat16':
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
elif cfg.dtype == 'float16':
flops_promised = 312e12 # A100 GPU float16 peak flops is 312 TFLOPS
else: #dtype == float32
flops_promised = 19.5e12 # A100 GPU float32 peak flops is 19.5 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
def init_state(self,batch_size,device):
n_state = len([PREV_X_TIME,NUM_STATE,DEN_STATE,MAX_STATE,PREV_X_CHANNEL])
state = torch.zeros(
(self.config.n_layer,batch_size,n_state,self.config.n_embd),
dtype=torch.float32, device=device,
)
state[:,:,MAX_STATE,:] -= 1e30
return state
def scale_parameters(self):
if self.config.rescale_every > 0:
with torch.no_grad():
for block_id,block in enumerate(self.rwkv.h):
block.attn.output_proj.weight.div_(2 ** int(block_id // self.config.rescale_every))
block.ffn.value_proj.weight.div_(2 ** int(block_id // self.config.rescale_every))
self.scaled = True
def unscale_parameters(self):
if self.config.rescale_every > 0 and self.scaled:
with torch.no_grad():
for block_id,block in enumerate(self.rwkv.h):
block.attn.output_proj.weight.mul_(2 ** int(block_id // self.config.rescale_every))
block.ffn.value_proj.weight.mul_(2 ** int(block_id // self.config.rescale_every))
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
idx: (batch_size,seq_len)
"""
batch_size,seq_len = idx.shape
state = self.init_state(batch_size,idx.device)
for seq_id in range(seq_len):
logits, _, state = self(idx[:,[seq_id]], state = state, return_state=True)
for _ in range(max_new_tokens):
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
logits, _, state = self(idx_next, state=state, return_state=True)
return idx
def load_cuda_kernel(self,dtype):
from torch.utils.cpp_extension import load
T_MAX = self.config.block_size
RWKV_FLOAT_MODE = dtype
if RWKV_FLOAT_MODE == "bfloat16":
wkv_cuda = load(name=f"wkv_{T_MAX}_bf16", sources=["cuda/wkv_op_bf16.cpp", "cuda/wkv_cuda_bf16.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w = -torch.exp(w.float().contiguous())
u = u.contiguous().bfloat16()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
return y
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
return (None, None, None, gw, gu, gk, gv)
else:
wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["cuda/wkv_op.cpp", "cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
if "32" in RWKV_FLOAT_MODE:
w = -torch.exp(w.contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
else:
w = -torch.exp(w.float().contiguous())
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
if "32" in RWKV_FLOAT_MODE:
return y
elif RWKV_FLOAT_MODE == "float16":
return y.half()
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
if "32" in RWKV_FLOAT_MODE:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if "32" in RWKV_FLOAT_MODE:
return (None, None, None, gw, gu, gk, gv)
elif RWKV_FLOAT_MODE == "float16":
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
global WKVKernel
WKVKernel = WKV