Multilabel sentence-level event classification experiments for the SENTiVENT Event dataset. Pilot study experiments meant for SENTiVENT Event Data manuscript submission.
Train-test-time output: Each train-test set and model is written to its model dir Reporting: Load each folder with predictions, parse them > summarize and rank
- Obtain dataset in WebAnno export format. Original dataset available upon request.
- Parse WebAnno export to .csv using
parse_to_processed
(requiressentivent_webannoparser
dependency). Processed .csv data is placed indata/processed
. - Set model and run settings (i.e. folder locations, etc.) in
settings.py
. - Run
multilabel_xval.py
to perform cross-validation hyperparametrization experiments on dev-set and train-holdout test on best hyperparametrization. - Run
multilable_xval_dummy.py
to run dummy classifiers. - Run
score_predictions.py
(set trained model dir in this file first) to compute performance metrics and produce summary files. Rank_models.py
: utility script to compare scores across trained models.write_qa.py
: helper script to produce/parse annotated qualitative error analysis.
This depends on the package SimpleTransformers.
pipenv install --python 3.7.5 simpletransformers torch pandas sklearn
MODEL_CLASSES = { 'bert': (BertConfig, BertForMultiLabelSequenceClassification, BertTokenizer), 'roberta': (RobertaConfig, RobertaForMultiLabelSequenceClassification, RobertaTokenizer), 'xlnet': (XLNetConfig, XLNetForMultiLabelSequenceClassification, XLNetTokenizer), 'xlm': (XLMConfig, XLMForMultiLabelSequenceClassification, XLMTokenizer), 'distilbert': (DistilBertConfig, DistilBertForMultiLabelSequenceClassification, DistilBertTokenizer), 'albert': (AlbertConfig, AlbertForMultiLabelSequenceClassification, AlbertTokenizer) }
- Remove large output files: checkpoints and epoch binaries.
- Change to experiment dir:
cd RUNDIR
- Check what you are removing
find . \( -name "epoch*" -or -name "checkpoint*" \) -exec echo "{}" \;
- Remove it
find . \( -name "epoch*" -or -name "checkpoint*" \) -exec rm -r "{}" \; -prune
You need to install Tensorflow to use Tensorboard on your client (simpletransformers actually uses the PyTorch-fork tensorboardx for its tensorboard output and does not depend on TF.):
First install a python version compatible with TF (latest=3.7.5 as of writing):
pyenv install 3.7.5
Now install TensorFlow
pipx install --python /home/gilles/.pyenv/versions/3.7.5/bin/python tensorflow
Now run the Tensorboard command on the run dir which was created during training:
tensorboard
###Roberta-large:
-
6 epochs: Crossvalidation score: {'eval_loss': 0.00614539818296748, 'LRAP': 0.9972541923792937} Holdout score: {'LRAP': 0.8745366615430941, 'eval_loss': 0.12979916081978723}
-
8 epochs: 2020-01-06_14-41-59-roberta-large: BEST
-
2020-01-07_12-14-25-roberta-large: 4 epochs WORST {"model_type": "roberta", "model_name": "roberta-large", "train_args": {"reprocess_input_data": true, "overwrite_output_dir": true, "num_train_epochs": 4, "n_gpu": 1}} holdout {'LRAP': 0.4904404584329125, 'eval_loss': 0.22251000754780823} ../models/2020-01-07_12-14-25-roberta-large/holdout all_fold_mean {'eval_loss': 0.1659443878521259, 'LRAP': 0.6338597185519774} -> way worse than 8 epochs (current best) DELETED
-
Roberta large 16 epochs: {"LRAP": 0.8505341862940574, "eval_loss": 0.215741140900978}: 8 is better on holdout
-
Roberta large 24 epochs:
###Albert-xxlarge-v2:
- 4 epochs: TOO LITTLE {'LRAP': 0.4919080370097837, 'eval_loss': 0.21860242708698735} ../models/2019-12-29_21-07-10-albert-xxlarge-v2/holdouttest_predictions.tsv holdouttest
- 8 epochs: 11 {'LRAP': 0.6902371653891292, 'eval_loss': 0.3356399894538489} ../models/2019-12-26_22-35-33-albert-xxlarge-v2/holdouttest_predictions.tsv holdouttest DELETED DIR
- 16 epochs: 11 {'LRAP': 0.7661070806622629, 'eval_loss': 0.40053606477494424} ../models/2019-12-29_21-06-28-albert-xxlarge-v2/holdouttest_predictions.tsv holdouttest
- 32 epochs 2020-01-02_12-24-34-albert-xxlarge-v2: {"model_type": "albert", "model_name": "albert-xxlarge-v2", "train_args": {"reprocess_input_data": true, "overwrite_output_dir": true, "num_train_epochs": 32, "n_gpu": 1, "evaluate_during_training": false}} {'LRAP': 0.5816406867781367, 'eval_loss': 0.5013814651212849} HOLDOUT = BAD (folddirs removed)
DistilRoberta-base:
- 4 epochs: holdout {'LRAP': 0.8399741222178314, 'eval_loss': 0.123979330349427} ../models/2020-01-07_12-18-42-distilroberta-base/holdout all_fold_mean {'eval_loss': 0.007836045015857104, 'LRAP': 0.9948021266208709} PRETTY GOOD
- Gilles Jacobs: gilles@jacobsgill.es, gilles.jacobs@ugent.be
- Veronique Hoste: veronique.hoste@ugent.be
This source code repo:
-
WAN:
-
LAN:
- gillesLatitude: ~/repos/
- weoh: ~/
- shares: lt3_sentivent
All trained models + results files
- lt3_sentivent share
models/
Dataset export used for experiments:
- gillesLatitude + weoh + shares in this repo @
data/raw/XMI-SENTiVENT-event-english-1.0-clean_2019-12-11_1246.zip