forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model] Add support for xverse (vllm-project#3610)
Co-authored-by: willhe <hexin@xverse.cn> Co-authored-by: root <root@localhost.localdomain>
- Loading branch information
1 parent
10e6322
commit 098e177
Showing
3 changed files
with
374 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,372 @@ | ||
# coding=utf-8 | ||
# Adapted from | ||
# https://huggingface.co/xverse/XVERSE-7B/blob/main/modeling_xverse.py | ||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | ||
# and OPT implementations in this library. It has been modified from its | ||
# original forms to accommodate minor architectural differences compared | ||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Inference-only Xverse model compatible with HuggingFace weights.""" | ||
from typing import Any, Dict, List, Optional, Tuple | ||
|
||
import torch | ||
from torch import nn | ||
from transformers import PretrainedConfig | ||
|
||
from vllm.attention import Attention, AttentionMetadata | ||
from vllm.config import LoRAConfig | ||
from vllm.model_executor.layers.activation import SiluAndMul | ||
from vllm.model_executor.layers.layernorm import RMSNorm | ||
from vllm.model_executor.layers.linear import (LinearMethodBase, | ||
MergedColumnParallelLinear, | ||
QKVParallelLinear, | ||
RowParallelLinear) | ||
from vllm.model_executor.layers.logits_processor import LogitsProcessor | ||
from vllm.model_executor.layers.rotary_embedding import get_rope | ||
from vllm.model_executor.layers.sampler import Sampler | ||
from vllm.model_executor.layers.vocab_parallel_embedding import ( | ||
ParallelLMHead, VocabParallelEmbedding) | ||
from vllm.model_executor.parallel_utils.parallel_state import ( | ||
get_tensor_model_parallel_world_size) | ||
from vllm.model_executor.sampling_metadata import SamplingMetadata | ||
from vllm.model_executor.weight_utils import (default_weight_loader, | ||
hf_model_weights_iterator) | ||
from vllm.sequence import SamplerOutput | ||
|
||
|
||
class XverseMLP(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
hidden_size: int, | ||
intermediate_size: int, | ||
hidden_act: str, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
) -> None: | ||
super().__init__() | ||
self.gate_up_proj = MergedColumnParallelLinear( | ||
hidden_size, [intermediate_size] * 2, | ||
bias=False, | ||
linear_method=linear_method) | ||
self.down_proj = RowParallelLinear(intermediate_size, | ||
hidden_size, | ||
bias=False, | ||
linear_method=linear_method) | ||
if hidden_act != "silu": | ||
raise ValueError(f"Unsupported activation: {hidden_act}. " | ||
"Only silu is supported for now.") | ||
self.act_fn = SiluAndMul() | ||
|
||
def forward(self, x): | ||
gate, _ = self.gate_up_proj(x) | ||
x = self.act_fn(gate) | ||
x, _ = self.down_proj(x) | ||
return x | ||
|
||
|
||
class XverseAttention(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
hidden_size: int, | ||
num_heads: int, | ||
num_kv_heads: int, | ||
rope_theta: float = 10000, | ||
rope_scaling: Optional[Dict[str, Any]] = None, | ||
max_position_embeddings: int = 8192, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
bias: bool = False, | ||
sliding_window: Optional[int] = None, | ||
) -> None: | ||
super().__init__() | ||
self.hidden_size = hidden_size | ||
tp_size = get_tensor_model_parallel_world_size() | ||
self.total_num_heads = num_heads | ||
assert self.total_num_heads % tp_size == 0 | ||
self.num_heads = self.total_num_heads // tp_size | ||
self.total_num_kv_heads = num_kv_heads | ||
# partition the KV heads across multiple tensor parallel GPUs. | ||
assert self.total_num_kv_heads % tp_size == 0 | ||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) | ||
self.head_dim = hidden_size // self.total_num_heads | ||
self.q_size = self.num_heads * self.head_dim | ||
self.kv_size = self.num_kv_heads * self.head_dim | ||
self.scaling = self.head_dim**-0.5 | ||
self.rope_theta = rope_theta | ||
self.max_position_embeddings = max_position_embeddings | ||
|
||
self.qkv_proj = QKVParallelLinear( | ||
hidden_size, | ||
self.head_dim, | ||
self.total_num_heads, | ||
self.total_num_kv_heads, | ||
bias=bias, | ||
linear_method=linear_method, | ||
) | ||
self.o_proj = RowParallelLinear( | ||
self.total_num_heads * self.head_dim, | ||
hidden_size, | ||
bias=bias, | ||
linear_method=linear_method, | ||
) | ||
|
||
self.rotary_emb = get_rope( | ||
self.head_dim, | ||
rotary_dim=self.head_dim, | ||
max_position=max_position_embeddings, | ||
base=rope_theta, | ||
rope_scaling=rope_scaling, | ||
) | ||
self.attn = Attention(self.num_heads, | ||
self.head_dim, | ||
self.scaling, | ||
num_kv_heads=self.num_kv_heads, | ||
sliding_window=sliding_window) | ||
|
||
def forward( | ||
self, | ||
positions: torch.Tensor, | ||
hidden_states: torch.Tensor, | ||
kv_cache: torch.Tensor, | ||
attn_metadata: AttentionMetadata, | ||
) -> torch.Tensor: | ||
qkv, _ = self.qkv_proj(hidden_states) | ||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) | ||
q, k = self.rotary_emb(positions, q, k) | ||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata) | ||
output, _ = self.o_proj(attn_output) | ||
return output | ||
|
||
|
||
class XverseDecoderLayer(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
) -> None: | ||
super().__init__() | ||
self.hidden_size = config.hidden_size | ||
rope_theta = getattr(config, "rope_theta", 10000) | ||
rope_scaling = getattr(config, "rope_scaling", None) | ||
max_position_embeddings = getattr(config, "max_position_embeddings", | ||
8192) | ||
sliding_window = getattr(config, "sliding_window", None) | ||
self.self_attn = XverseAttention( | ||
hidden_size=self.hidden_size, | ||
num_heads=config.num_attention_heads, | ||
num_kv_heads=getattr(config, "num_key_value_heads", | ||
config.num_attention_heads), | ||
rope_theta=rope_theta, | ||
rope_scaling=rope_scaling, | ||
max_position_embeddings=max_position_embeddings, | ||
linear_method=linear_method, | ||
bias=getattr(config, "bias", False), | ||
sliding_window=sliding_window, | ||
) | ||
self.mlp = XverseMLP( | ||
hidden_size=self.hidden_size, | ||
intermediate_size=config.intermediate_size, | ||
hidden_act=config.hidden_act, | ||
linear_method=linear_method, | ||
) | ||
self.input_layernorm = RMSNorm(config.hidden_size, | ||
eps=config.rms_norm_eps) | ||
self.post_attention_layernorm = RMSNorm(config.hidden_size, | ||
eps=config.rms_norm_eps) | ||
|
||
def forward( | ||
self, | ||
positions: torch.Tensor, | ||
hidden_states: torch.Tensor, | ||
kv_cache: torch.Tensor, | ||
attn_metadata: AttentionMetadata, | ||
residual: Optional[torch.Tensor], | ||
) -> Tuple[torch.Tensor, torch.Tensor]: | ||
# Self Attention | ||
if residual is None: | ||
residual = hidden_states | ||
hidden_states = self.input_layernorm(hidden_states) | ||
else: | ||
hidden_states, residual = self.input_layernorm( | ||
hidden_states, residual) | ||
hidden_states = self.self_attn( | ||
positions=positions, | ||
hidden_states=hidden_states, | ||
kv_cache=kv_cache, | ||
attn_metadata=attn_metadata, | ||
) | ||
|
||
# Fully Connected | ||
hidden_states, residual = self.post_attention_layernorm( | ||
hidden_states, residual) | ||
hidden_states = self.mlp(hidden_states) | ||
return hidden_states, residual | ||
|
||
|
||
class XverseModel(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
lora_config: Optional[LoRAConfig] = None, | ||
) -> None: | ||
super().__init__() | ||
self.config = config | ||
self.padding_idx = config.pad_token_id | ||
lora_vocab = (lora_config.lora_extra_vocab_size * | ||
(lora_config.max_loras or 1)) if lora_config else 0 | ||
self.vocab_size = config.vocab_size + lora_vocab | ||
self.org_vocab_size = config.vocab_size | ||
self.embed_tokens = VocabParallelEmbedding( | ||
self.vocab_size, | ||
config.hidden_size, | ||
org_num_embeddings=config.vocab_size, | ||
) | ||
self.layers = nn.ModuleList([ | ||
XverseDecoderLayer(config, linear_method) | ||
for _ in range(config.num_hidden_layers) | ||
]) | ||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
kv_caches: List[torch.Tensor], | ||
attn_metadata: AttentionMetadata, | ||
) -> torch.Tensor: | ||
hidden_states = self.embed_tokens(input_ids) | ||
residual = None | ||
for i in range(len(self.layers)): | ||
layer = self.layers[i] | ||
hidden_states, residual = layer( | ||
positions, | ||
hidden_states, | ||
kv_caches[i], | ||
attn_metadata, | ||
residual, | ||
) | ||
hidden_states, _ = self.norm(hidden_states, residual) | ||
return hidden_states | ||
|
||
|
||
class XverseForCausalLM(nn.Module): | ||
packed_modules_mapping = { | ||
"qkv_proj": [ | ||
"q_proj", | ||
"k_proj", | ||
"v_proj", | ||
], | ||
"gate_up_proj": [ | ||
"gate_proj", | ||
"up_proj", | ||
], | ||
} | ||
|
||
# LoRA specific attributes | ||
supported_lora_modules = [ | ||
"qkv_proj", | ||
"o_proj", | ||
"gate_up_proj", | ||
"down_proj", | ||
"embed_tokens", | ||
"lm_head", | ||
] | ||
embedding_modules = { | ||
"embed_tokens": "input_embeddings", | ||
"lm_head": "output_embeddings", | ||
} | ||
embedding_padding_modules = ["lm_head"] | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
linear_method: Optional[LinearMethodBase] = None, | ||
lora_config=None, | ||
) -> None: | ||
super().__init__() | ||
self.config = config | ||
self.linear_method = linear_method | ||
self.model = XverseModel(config, linear_method) | ||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size) | ||
self.logits_processor = LogitsProcessor(config.vocab_size) | ||
self.sampler = Sampler() | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
kv_caches: List[torch.Tensor], | ||
attn_metadata: AttentionMetadata, | ||
) -> torch.Tensor: | ||
hidden_states = self.model(input_ids, positions, kv_caches, | ||
attn_metadata) | ||
return hidden_states | ||
|
||
def compute_logits(self, hidden_states: torch.Tensor, | ||
sampling_metadata: SamplingMetadata) -> torch.Tensor: | ||
logits = self.logits_processor(self.lm_head.weight, hidden_states, | ||
sampling_metadata) | ||
return logits | ||
|
||
def sample( | ||
self, | ||
logits: torch.Tensor, | ||
sampling_metadata: SamplingMetadata, | ||
) -> Optional[SamplerOutput]: | ||
next_tokens = self.sampler(logits, sampling_metadata) | ||
return next_tokens | ||
|
||
def load_weights(self, | ||
model_name_or_path: str, | ||
cache_dir: Optional[str] = None, | ||
load_format: str = "auto", | ||
revision: Optional[str] = None): | ||
stacked_params_mapping = [ | ||
("qkv_proj", "q_proj", "q"), | ||
("qkv_proj", "k_proj", "k"), | ||
("qkv_proj", "v_proj", "v"), | ||
("gate_up_proj", "gate_proj", 0), | ||
("gate_up_proj", "up_proj", 1), | ||
] | ||
params_dict = dict(self.named_parameters()) | ||
for name, loaded_weight in hf_model_weights_iterator( | ||
model_name_or_path, cache_dir, load_format, revision): | ||
if ("rotary_emb.inv_freq" in name | ||
or "rotary_emb.cos_cached" in name | ||
or "rotary_emb.sin_cached" in name): | ||
continue | ||
for (param_name, weight_name, shard_id) in stacked_params_mapping: | ||
if weight_name not in name: | ||
continue | ||
name = name.replace(weight_name, param_name) | ||
# Skip loading extra bias for GPTQ models. | ||
if name.endswith(".bias") and name not in params_dict: | ||
continue | ||
param = params_dict[name] | ||
weight_loader = param.weight_loader | ||
weight_loader(param, loaded_weight, shard_id) | ||
break | ||
else: | ||
# Skip loading extra bias for GPTQ models. | ||
if name.endswith(".bias") and name not in params_dict: | ||
continue | ||
param = params_dict[name] | ||
weight_loader = getattr(param, "weight_loader", | ||
default_weight_loader) | ||
weight_loader(param, loaded_weight) |