forked from bigdata-ustc/EduKTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEKPT.py
162 lines (144 loc) · 8.17 KB
/
EKPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# coding: utf-8
# 2021/4/5 @ liujiayu
import logging
import numpy as np
import pickle
from tqdm import tqdm
from collections import namedtuple
from collections import defaultdict
from EduKTM import KTM
hyper_para = namedtuple("hyperparameters", ["r", "D", "deltaT", "S", "lambda_U_1", "lambda_U", "lambda_P", "lambda_S"])
default_hyper = hyper_para(6, 2, 1, 5, 0.01, 2, 2, 0.01)
def init_parameters(stu_num, prob_num, know_num, time_window_num):
u_latent = np.random.normal(0.5, 0.01, size=(time_window_num, stu_num, know_num))
i_latent = 0.1 * np.random.uniform(0, 1, size=(prob_num, know_num)) # problems' latent vector(V)
alpha = np.random.uniform(0, 1, size=stu_num)
B = 0.01 * np.random.normal(0, 1, size=prob_num)
return u_latent, i_latent, alpha, B
def stu_curve(u_latent, alpha, r, D, deltaT, S, time_freq): # learning and forgetting curve
freq_norm = D * time_freq / (time_freq + r)
learn_factor = u_latent * freq_norm
forget_factor = u_latent * np.exp(-deltaT / S)
pred_u = learn_factor * np.expand_dims(alpha, axis=1) + forget_factor * np.expand_dims(1 - alpha, axis=1)
return pred_u, freq_norm
class EKPT(KTM):
"""
EKPT model, training (MAP) and testing methods
Parameters
----------
q_m: array
Q matrix, shape = (prob_num, know_num)
stu_num: int
number of students
prob_num: int
number of problems
know_num: int
number of knowledge
time_window_num: int
number of time windows
args: namedtuple
all hyper-parameters
----------
"""
def __init__(self, q_m, stu_num, prob_num, know_num, time_window_num, args=default_hyper):
super(EKPT, self).__init__()
self.args = args
self.q_m = q_m
self.stu_num, self.prob_num, self.know_num = stu_num, prob_num, know_num
self.time_window_num = time_window_num
self.u_latent, self.i_latent, self.alpha, self.B = init_parameters(stu_num, prob_num, know_num, time_window_num)
# partial order of knowledge in each problem
self.par_mat = np.zeros(shape=(prob_num, know_num, know_num))
for i in range(prob_num):
for o1 in range(know_num):
if self.q_m[i][o1] == 0:
continue
for o2 in range(know_num):
if self.q_m[i][o2] == 0:
self.par_mat[i][o1][o2] = 1
# exercise relation
self.exer_neigh = (np.dot(self.q_m, self.q_m.transpose()) > 0).astype(int)
def train(self, train_data, epoch, lr=0.001, lr_b=0.0001, epsilon=1e-3, init_method='mean') -> ...:
# train_data(list): response data, length = time_window_num, e.g.[[{'user_id':, 'item_id':, 'score':},...],...]
assert self.time_window_num == len(train_data), 'number of time windows conflicts'
u_latent, i_latent = np.copy(self.u_latent), np.copy(self.i_latent)
alpha, B = np.copy(self.alpha), np.copy(self.B)
# mean score of each student in train_data
sum_score = np.zeros(shape=self.stu_num)
sum_count = np.zeros(shape=self.stu_num)
# knowledge frequency in each time window
time_freq = np.zeros(shape=(self.time_window_num, self.stu_num, self.know_num))
for t in range(self.time_window_num):
for record in train_data[t]:
user, item, rating = record['user_id'], record['item_id'], record['score']
time_freq[t][user][np.where(self.q_m[item] == 1)[0]] += 1
sum_score[user] += rating
sum_count[user] += 1
# initialize student latent with mean score
if init_method == 'mean':
u_latent = np.random.normal(20 * np.expand_dims(sum_score / (sum_count + 1e-9), axis=1) / self.know_num,
0.01, size=(self.time_window_num, self.stu_num, self.know_num))
for iteration in range(epoch):
u_latent_tmp, i_latent_tmp = np.copy(u_latent), np.copy(i_latent)
alpha_tmp, B_tmp = np.copy(alpha), np.copy(B)
i_gradient = np.zeros(shape=(self.prob_num, self.know_num))
b_gradient = np.zeros(shape=self.prob_num)
alpha_gradient = np.zeros(shape=self.stu_num)
for t in range(self.time_window_num):
u_gradient_t = np.zeros(shape=(self.stu_num, self.know_num))
record_num_t = len(train_data[t])
users = [record['user_id'] for record in train_data[t]]
items = [record['item_id'] for record in train_data[t]]
ratings = [record['score'] for record in train_data[t]]
pred_R = [np.dot(u_latent[t][users[i]], i_latent[items[i]]) - B[items[i]] for i in range(record_num_t)]
pred_u, freq_norm = stu_curve(u_latent, alpha, self.args.r, self.args.D, self.args.deltaT, self.args.S,
time_freq) # both shape are (time_window_num, stu_num, know_num)
for i in range(record_num_t):
user, item, rating = users[i], items[i], ratings[i]
R_diff = pred_R[i] - rating
b_gradient[item] -= R_diff
u_gradient_t[user] += R_diff * i_latent[item]
i_gradient[item] += R_diff * u_latent[t][user] + self.args.lambda_S * i_latent[item]
i_gradient[item] -= self.args.lambda_S * np.sum(
np.expand_dims(self.exer_neigh[item], axis=1) * i_latent, axis=0) / sum(self.exer_neigh[item])
if t == 0:
u_gradient_t[user] += self.args.lambda_U_1 * u_latent[0][user]
else:
u_gradient_t[user] += self.args.lambda_U * (u_latent[t][user] - pred_u[t - 1][user])
alpha_gradient[user] += np.dot(pred_u[t - 1][user] - u_latent[t][user], u_latent[t][user] * (
freq_norm[t - 1][user] - np.exp(-self.args.deltaT / self.args.S)))
if t < self.time_window_num - 1:
u_gradient_t[user] += self.args.lambda_U * (pred_u[t][user] - u_latent[t + 1][user]) * (
alpha[user] * freq_norm[t][user] + (1 - alpha[user]) * np.exp(
- self.args.deltaT / self.args.S))
o1, o2 = np.where(self.par_mat[item] == 1)
for j in range(len(o1)):
i_gradient[item][o1[j]] -= self.args.lambda_P * 0.5 * (1 - np.tanh(
0.5 * (i_latent[item][o1[j]] - i_latent[item][o2[j]])))
i_gradient[item][o2[j]] += self.args.lambda_P * 0.5 * (1 - np.tanh(
0.5 * (i_latent[item][o1[j]] - i_latent[item][o2[j]])))
u_latent[t] -= lr * u_gradient_t
i_latent -= lr * i_gradient
B -= lr_b * b_gradient
alpha = np.clip(alpha - lr * alpha_gradient, 0, 1)
change = max(np.max(np.abs(u_latent - u_latent_tmp)), np.max(np.abs(i_latent - i_latent_tmp)),
np.max(np.abs(alpha - alpha_tmp)), np.max(np.abs(B - B_tmp)))
if iteration > 20 and change < epsilon:
break
self.u_latent, self.i_latent, self.alpha, self.B = u_latent, i_latent, alpha, B
def eval(self, test_data) -> tuple:
test_rmse, test_mae = [], []
for i in tqdm(test_data, "evaluating"):
stu, test_id, true_score = i['user_id'], i['item_id'], i['score']
predict_rating = np.clip(np.dot(self.u_latent[-1][stu], self.i_latent[test_id]) - self.B[test_id], 0, 1)
test_rmse.append((predict_rating - true_score) ** 2)
test_mae.append(abs(predict_rating - true_score))
return np.sqrt(np.average(test_rmse)), np.average(test_mae)
def save(self, filepath):
with open(filepath, 'wb') as file:
pickle.dump({"U": self.u_latent, "V": self.i_latent, "alpha": self.alpha, "B": self.B}, file)
logging.info("save parameters to %s" % filepath)
def load(self, filepath):
with open(filepath, 'rb') as file:
self.u_latent, self.i_latent, self.alpha, self.B = pickle.load(file).values()
logging.info("load parameters from %s" % filepath)