-
Notifications
You must be signed in to change notification settings - Fork 371
/
Copy pathsnap.py
556 lines (479 loc) · 22.9 KB
/
snap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
#-*- coding: utf-8 -*-
# (c) 2018~2024 FinaceData.KR
import re
import io
import json
import pandas as pd
import requests
from bs4 import BeautifulSoup
from io import StringIO
from datetime import datetime
from itertools import product
from tqdm import tqdm
def _marcap_market_page(sosok, page):
url = f'https://finance.naver.com/sise/sise_market_sum.nhn?sosok={sosok}&page={page}'
# 거래량, 매수호가, 거래대금(백만), 시가총액(억), 영업이익(억), PER(배): cookies = {'field_list': '12|06108810'}
# 시가, 매도호가, 전일거래량, 자산총계(억), 영업이익증가율, ROE(%): cookies = {'field_list': '12|01882048'}
# 고가, 매수총잔량, 외국인비율, 부채총계(억), 당기순이익(억), ROA(%): cookies = {'field_list': '12|00441424'}
# 저가, 매도총잔량, 상장주식수(천주), 매출액(억), 주당순이익(원), PBR(배): cookies = {'field_list': '12|00234202'}
# 매출액증가율, 보통주배당금(원), 유보율(%): cookies = {'field_list': '12|00000181'}
field_list = [
# field_list, columns
('12|06108810', ['N', '종목명', '현재가', '전일비', '등락률', '액면가', '거래량', '매수호가', '거래대금', '시가총액', '영업이익', 'PER']),
('12|01882048', ['시가', '매도호가', '전일거래량', '자산총계', '영업이익증가율', 'ROE']),
('12|00441424', ['고가', '매수총잔량', '외국인비율', '부채총계', '당기순이익', 'ROA']),
('12|00234202', ['저가', '매도총잔량', '상장주식수', '매출액', '주당순이익', 'PBR']),
('12|00000181', ['매출액증가율', '보통주배당금', '유보율']),
]
marcap = pd.DataFrame()
marcap['시장'] = sosok
for field in field_list:
f, cols = field
cookies = {'field_list': f}
html = requests.get(url, cookies=cookies).text
df = pd.read_html(html)[1]
if len(df) == 0:
break
marcap[field[1]] = df[field[1]]
if len(marcap) == 0:
return marcap
soup = BeautifulSoup(html, 'lxml')
table = soup.find_all('table')[1]
trs = table.find_all('tr')
codes = []
for tr in trs[1:]:
tds = tr.find_all('td')
code = tds[1].a['href'].split('=')[1] if len(tds) >= 2 else None
codes.append(code)
marcap.insert(1, '종목코드', codes)
marcap.dropna(how='all', inplace=True)
marcap.reset_index(drop=True, inplace=True)
marcap['등락률'] = marcap['등락률'].astype(str).str.replace('%', '').replace(',', '').astype(float) / 100.0
marcap['ROE'] = marcap['ROE'] / 100.0
marcap['ROA'] = marcap['ROA'] / 100.0
marcap['유보율'] = marcap['유보율'] / 100.0
marcap = marcap[['N', '종목코드', '종목명', '현재가', '전일비', '등락률', '액면가',
'거래량', '시가', '고가', '저가', '매수호가', '매도호가', '매수총잔량', '매도총잔량',
'거래대금', '전일거래량', '외국인비율', '상장주식수', '시가총액', '자산총계', '부채총계',
'매출액', '매출액증가율', '영업이익', '영업이익증가율', '당기순이익', '주당순이익', '보통주배당금',
'PER', 'ROE', 'ROA', 'PBR', '유보율']]
return marcap
def marcap(market='KRX', verbose=1):
'''
시가총액순 종목 데이터를 반환합니다.
* market: 'KOSPI'=코스피, 'KOSDAQ'=코스닥, 'KRX'=코스피+코스닥
* verbose: 1=진행상태를 표시합니다
'''
kospi_prod = list(product([0], range(1, 32+1)))
kosdaq_prod = list(product([1], range(1, 29+1)))
market = market.strip().upper()
if market == 'KOSPI':
page_prod = kospi_prod
total = 32
elif market == 'KOSDAQ':
page_prod = kosdaq_prod
total = 29
elif market == 'KRX':
page_prod = kospi_prod + kosdaq_prod
total = 32+29
else:
raise ValueError("market must be one of 'KOSPI', 'KOSDAQ' or 'KRX'")
df_list = []
for i, (sosok, page) in tqdm(enumerate(page_prod), total=total):
df = _marcap_market_page(sosok, page)
df_list.append(df)
# print('.', end='') if verbose else print('', end='')
df_merged = pd.concat(df_list)
df_merged.sort_values(by='시가총액', ascending=False, inplace=True)
return df_merged
def _to_float(x, half=None):
'''
* x: 변환대상 값
* half('l' 구분자):None=전체, 0=첫번째 절반, 1=두번째 절반
'''
x = re.sub(r'[\t\n, 조억원배%]', '', str(x))
if half != None and len(x.split('l')) > 1:
return pd.to_numeric(x.split('l')[half], errors='coerce').item()
return pd.to_numeric(x, errors='coerce').item()
def factors(code):
'''
다양한 팩터데이터(dict)를 반환합니다.
* code: 종목코드
반환값(dict): 반환값의 항목은 다음과 같습니다
'회사개요', '시가총액', '상장주식수',
'외국인한도주식수', '외국인보유주식수', '외국인소진율',
'목표주가', '최고52주', '최저52주',
'PER', 'EPS', '추정PER', '추정EPS', 'PBR', 'BPS', '배당수익률',
'동일업종_PER', '동일업종_등락률'
'자사주_보유지분', '자사주_주식수',
'''
keys = [
'회사개요', '시가총액', '상장주식수',
'외국인한도주식수', '외국인보유주식수', '외국인소진율',
'목표주가', '최고52주', '최저52주',
'PER', 'EPS', '추정PER', '추정EPS', 'PBR', 'BPS', '배당수익률',
'동일업종_PER', '동일업종_등락률'
'자사주_보유지분', '자사주_주식수',
]
factor_data = dict.fromkeys(keys)
## 회사개요
url = 'https://finance.naver.com/item/main.nhn?code=' + code
r = requests.get(url)
soup = BeautifulSoup(r.text, features="lxml")
summary_info = soup.find(id='summary_info')
text = summary_info.text.strip() if summary_info else ''
factor_data['회사개요'] = '\n'.join(text.split('\n')[1:4])
try:
df_list = pd.read_html(r.text, match='상장주식수')
df = df_list[0]
factor_data['시가총액'] = _to_float(df.iloc[0,1])
factor_data['상장주식수'] = _to_float(df.iloc[2,1])
except ValueError as e:
print(code, e)
try:
df_list = pd.read_html(r.text, match='외국인한도주식수')
df = df_list[0]
factor_data['외국인한도주식수'] = _to_float(df.iloc[0,1])
factor_data['외국인보유주식수'] = _to_float(df.iloc[1,1])
factor_data['외국인소진율'] = _to_float(df.iloc[2,1])
except ValueError as e:
print(code, e)
try:
df_list = pd.read_html(r.text, match='목표주가')
df = df_list[0]
factor_data['목표주가'] = _to_float(df.iloc[0,1], half=1)
factor_data['최고52주'] = _to_float(df.iloc[1,1], half=0)
factor_data['최저52주'] = _to_float(df.iloc[1,1], half=1)
except ValueError as e:
print(code, e)
try:
df_list = pd.read_html(r.text, match='추정PER')
df = df_list[0]
factor_data['PER'] = _to_float(df.iloc[0,1], half=0)
factor_data['EPS'] = _to_float(df.iloc[0,1], half=1)
factor_data['추정PER'] = _to_float(df.iloc[1,1], half=0)
factor_data['추정EPS'] = _to_float(df.iloc[1,1], half=1)
factor_data['PBR'] = _to_float(df.iloc[2,1], half=0)
factor_data['BPS'] = _to_float(df.iloc[2,1], half=1)
factor_data['배당수익률'] = _to_float(df.iloc[3,1])
except ValueError as e:
print(code, e)
try:
df_list = pd.read_html(r.text, match='동일업종 PER')
df = df_list[0]
factor_data['동일업종_PER'] = _to_float(df.iloc[0,1])
factor_data['동일업종_등락률'] = _to_float(df.iloc[1,1])
except ValueError as e:
print(code, e)
# 기업현황
try:
url = f'https://navercomp.wisereport.co.kr/v2/company/c1010001.aspx?cmp_cd={code}'
dfs = pd.read_html(url, encoding='utf-8')
# 기업현황 / 시세및 주주현황
df = dfs[4].set_index('주요주주')
자사주_주식수, 자사주_보유지분 = 0, 0
if '자사주' in df.index:
자사주_주식수 = df.loc['자사주']['보유주식수(보통)']
자사주_보유지분 = df.loc['자사주']['보유지분(%)']
factor_data['자사주_주식수'] = 자사주_주식수
factor_data['자사주_보유지분'] = 자사주_보유지분
except ValueError as e:
print(code, e)
return factor_data
def stock_price_day(code, start=None, end=None):
'''
기간(start ~ end)사이의 종목(code)의 일별 가격 데이터를 데이터프레임으로 반환합니다
* code: 종목코드
* start: 시작일(기본값: 1970-01-01)
* end: 종료일(기본값: 오늘)
'''
start, end = pd.to_datetime(start), pd.to_datetime(end)
start = datetime(1970, 1, 1) if start is None else start
end = datetime.today() if end is None else end
url = 'https://fchart.stock.naver.com/sise.nhn?timeframe=day&count=6000&requestType=0&symbol='
r = requests.get(url + code)
data_list = re.findall(r'<item data=\"(.*?)\" />', r.text, re.DOTALL)
if len(data_list) == 0:
return pd.DataFrame()
data = '\n'.join(data_list)
df = pd.read_csv(StringIO(data), delimiter='|', header=None, dtype={0:str})
df.columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d')
df.set_index('Date', inplace=True)
df.sort_index(inplace=True)
df['Change'] = df['Close'].pct_change()
return df.query('index>=%r and index<=%r' % (start, end))
def stock_price_minute(code, date=None):
'''
지정한 날짜의 분봉 데이터를 데이터프레임으로 반환합니다 (지난 5영업일까지 가능)
* code: 종목코드
* date: 날짜 (기본값: 오늘)
'''
dt = datetime.today() if date==None else pd.to_datetime(date)
dt_str = dt.strftime('%Y%m%d')
df_list = []
prev_html = ''
# 1~40 page 크롤링
for page in range(1,50):
url = f'https://finance.naver.com/item/sise_time.nhn?code={code}&thistime={dt_str}180000&page={page}'
r = requests.get(url, headers={'user-agent': 'Mozilla/5.0'})
df = pd.read_html(r.text, header=0)[0]
if page > 1 and prev_html==r.text:
break
prev_html = r.text
df.dropna(inplace=True)
df_list.append(df)
if len(df) == 0 or df.iloc[-1, 0] == '09:00':
break
result = pd.concat(df_list)
result['체결시각'] = dt.strftime('%Y-%m-%d') + ' ' + result['체결시각']
result['체결시각'] = pd.to_datetime(result['체결시각'])
result.set_index('체결시각', inplace=True)
result.sort_index(inplace=True)
return result
def finstate_detail(code, rpt='0', freq='0', gubun='MAIN'):
'''
네이버 파이낸스로 부터 상세재무제표를 읽어온다
:param code: 종목코드: '005930'
:param rpt: 종류: '0'=손익계산서(기본값), '1'=재무상태표, '2'=현금흐름표
:param freq: 기간: '0'=연간(기본값), '1'=분기
:param gubun: 구분: 'MAIN'=주재무제표(기본값), 'IFRSS'=KIFRS별도, 'IFRSL'=IFRS연결, 'GAAPS'=GAAP개별, 'GAAPL'=GAAP연결
'''
# encparam 가져오기
url = 'https://navercomp.wisereport.co.kr/v2/company/c1010001.aspx?cmp_cd=005930'
html_text = requests.get(url).text
encparam = re.findall (r"encparam: '(.*?)'", html_text)[0]
url = f'https://navercomp.wisereport.co.kr/v2/company/cF3002.aspx?cmp_cd={code}&frq={freq}&rpt={rpt}&finGubun={gubun}&frqTyp={freq}&cn=&encparam={encparam}'
# 페이지 가져오기
headers={'Referer': url}
r = requests.get(url, headers=headers)
jo = json.loads(r.text)
# DataFrame 생성
df = pd.json_normalize(jo, 'DATA')
# DATA1~DATA6 컬럼 이름 바꾸기
jo_yymm = jo['YYMM'][:6]
date_str_list = []
for yymm in jo_yymm:
m = re.search(r'(\d{4}/\d{0,2}).*', yymm)
date_str_list.append(m.group(1) if m else '')
data_n_list = ['DATA' + str(i) for i in range(1,7)]
yymm_cols = zip(data_n_list, date_str_list)
cols_map = dict(yymm_cols)
df.rename(columns=cols_map, inplace=True)
if not len(df):
print(f'no data found {code}')
return df
df['ACC_NM'] = df['ACC_NM'].str.strip().replace(r'[\.*\[\]]', '', regex=True)
df.set_index(['ACCODE', 'ACC_NM'], inplace=True)
df = df.iloc[:, 5:11] # 날짜 컬럼만 추출
df = df.T # Transpose (컬럼, 인덱스 바꾸기)
df.index = pd.to_datetime(df.index)
df.index.name = '날짜'
return df
def finstate_summary(code, fin_type='0', freq='Y'):
'''
요약제무제표데이터를 데이터프레임으로 반환합니다
:param code: 종목코드
:param fin_type: 재무제표 종류 '0'=주재무제표, '1'=K-GAAP개별, '2'=K-GAAP연결, '3'=K-IFRS별도, '4'=K-IFRS연결
:param freq: 기간: Y=년(기본), Q=분기, 'A'=연간분기 전체
'''
# encparam 읽어오기
url = 'https://navercomp.wisereport.co.kr/v2/company/c1010001.aspx?cmp_cd=005930'
html_text = requests.get(url).text
if not re.search(r"encparam: '(.*?)'", html_text):
print('encparam not found') # encparam이 없는 경우
return None
encparam = re.findall (r"encparam: '(.*?)'", html_text)[0]
url = f'https://navercomp.wisereport.co.kr/v2/company/ajax/cF1001.aspx?cmp_cd={code}&fin_typ={fin_type}&freq_typ={freq}&encparam={encparam}'
r = requests.get(url, headers={'Referer': url})
df_list = pd.read_html(io.StringIO(r.text), encoding='euc-kr')
df = df_list[1]
df.columns = [col[1] for col in df.columns]
df.set_index('주요재무정보', inplace=True)
df.columns = [re.sub(r'[^\.\d]', '', col) for col in df.columns]
df.columns = [pd.to_datetime(col, format='%Y%m', errors='coerce') for col in df.columns]
df = df.transpose()
df.index.name = '날짜'
return df
def invest_index(code, rpt='5', frq='1', finGubun='IFRSL'):
'''
네이버 파이낸스로 부터 투자지표 읽어옵니다
* code (종목코드): '005930'
* rpt (종류): '1'=수익성, '2'=성장성, '3'=안정성, '4'=활동성, '5'=가치분석 (기본값)
* frq (기간): '0'=연간, '1'=분기(기본값)
* finGubun (구분): 'MAIN'=주재무제표, 'IFRSS'=KIFRS별도, 'IFRSL'=IFRS연결(기본값), 'GAAPS'=GAAP개별, 'GAAPL'=GAAP연결
'''
# encparam 읽어오기
url = 'http://companyinfo.stock.naver.com/v1/company/c1040001.aspx?cmp_cd=005930'
html_text = requests.get(url).text
if not re.search(r"encparam: '(.*?)'", html_text):
print('encparam not found') # encparam이 없는 경우
return None
encparam = re.findall (r"encparam: '(.*?)'", html_text)[0]
# 투자지표 데이터 가져오기
url = f'http://companyinfo.stock.naver.com/v1/company/cF4002.aspx?' \
f'cmp_cd={code}&frq={frq}&rpt={rpt}&finGubun={finGubun}&frqTyp={frq}&cn=&encparam={encparam}'
# DataFrame 생성
headers={'Referer': 'http://companyinfo.stock.naver.com'}
jo = json.loads(requests.get(url, headers=headers).text)
df = pd.json_normalize(jo, 'DATA')
# DATA1~DATA6 컬럼 이름 바꾸기
jo_yymm = jo['YYMM'][:6]
date_str_list = []
for yymm in jo_yymm:
m = re.search(r'(\d{4}/\d{0,2}).*', yymm)
date_str_list.append(m.group(1) if m else '')
data_n_list = ['DATA' + str(i) for i in range(1,7)]
yymm_cols = zip(data_n_list, date_str_list)
cols_map = dict(yymm_cols)
df.rename(columns=cols_map, inplace=True)
df['ACC_NM'] = df['ACC_NM'].str.strip().replace(r'[\.*\[\]]', '', regex=True)
df = df.drop_duplicates(['ACCODE', 'ACC_NM'], keep='last')
df.set_index(['ACCODE', 'ACC_NM'], inplace=True)
df = df.iloc[:, 5:11] # 날짜 컬럼만 추출
df = df.T # Transpose (컬럼, 인덱스 바꾸기)
df = df.dropna(how='all')
df.index = pd.to_datetime(df.index)
df.index.name = '날짜'
return df
def investors(code):
'''
투자자별 매매 동향을 반환합니다 (20일)
* code: 종목코드
'''
url = f'https://finance.naver.com/item/frgn.nhn?code={code}'
r = requests.get(url, headers={'User-Agent':'Mozilla/5.0 AppleWebKit/537.36 Edg/122.0.0.0'})
print()
try:
df_list = pd.read_html(io.StringIO(r.text), encoding='euc-kr')
except ValueError as e:
print(e)
raise Exception(f'invalid stock code or url: {url}')
df = df_list[2].dropna(how='all').copy()
df.columns = ['날짜', '종가', '전일비', '등락률', '거래량', '기관순매매량', '외국인순매매량', '외국인보유주수', '외국인보유율']
df['날짜'] = pd.to_datetime(df['날짜'])
df['등락률'] = df['등락률'].str.replace('%', '').astype('float')
df.sort_values('날짜', inplace=True)
df.set_index('날짜', inplace=True)
return df
def sector_stock_list(verbose=False):
'''
업종별 종목리스트 데이터를 가져옵니다
반환값(DataFrame): 컬럼=[종목코드,종목명,시장,업종명,업종코드]
'''
url = 'https://finance.naver.com/sise/sise_group.nhn?type=upjong'
r = requests.get(url)
soup = BeautifulSoup(r.text, 'lxml')
a_list = soup.select('a[href*=sise_group_detail]')
row_list = []
for ix, a in enumerate(a_list):
sector_name = a.text
sector_no = a['href'].replace('/sise/sise_group_detail.nhn?type=upjong&no=', '')
sector_url = 'https://finance.naver.com' + a['href']
url = f'https://finance.naver.com/sise/sise_group_detail.nhn?type=upjong&no={sector_no}'
r = requests.get(url)
soup = BeautifulSoup(r.text, 'lxml')
divs = soup.select('div[class="name_area"]')
if verbose:
print(f'{ix:2} {sector_name}({len(divs)}종목) {sector_url}')
for div in divs:
code = div.a['href'].replace('/item/main.nhn?code=', '')
name = div.text
market = 'KOSDAQ' if ' *' in name else 'KOSPI'
name = name.replace(' *', '')
row_list.append([code, name, market, sector_name, sector_no])
# print(code, name, market, sector_name, sector_no)
sector_stocks = pd.DataFrame(row_list, columns=['종목코드', '종목명', '시장', '업종명', '업종코드'])
return sector_stocks
def __up(sosok=0):
url = f'https://finance.naver.com/sise/sise_rise.naver?sosok={sosok}'
# 거래량, 거래대금(백만), 매수호가, 시가총액(억), 영업이익(억), PER(배): cookies = {'field_list': '2|06108810'}
# 시가, 매도호가, 자산총계(억), 영업이익증가율, ROE(%): cookies = {'field_list': '2|01882048'}
# 고가, 매수총잔량, 외국인비율, 부채총계(억), 당기순이익(억), ROA(%): cookies = {'field_list': '12|00441424'}
# 저가, 매도총잔량, 상장주식수(천주), 매출액(억), 주당순이익(원), PBR(배): cookies = {'field_list': '12|00234202'}
# 매출액증가율, 보통주배당금(원), 유보율(%): cookies = {'field_list': '12|00000181'}
field_list = [
# field_list, columns
('2|06108810', ['N', '종목명', '현재가', '전일비', '등락률', '거래량', '거래대금', '매수호가', '시가총액', '영업이익', 'PER']),
('2|01882048', ['시가', '매도호가', '전일거래량', '자산총계', '영업이익증가율', 'ROE']),
('2|00441424', ['고가', '매수총잔량', '외국인비율', '부채총계', '당기순이익', 'ROA']),
('2|00234202', ['저가', '매도총잔량', '상장주식수', '매출액', '주당순이익', 'PBR']),
('2|00000181', ['매출액증가율', '보통주배당금', '유보율']),
]
up = pd.DataFrame()
up['시장'] = sosok
for field in field_list:
f, cols = field
cookies = {'field_list': f}
html = requests.get(url, cookies=cookies).text
df = pd.read_html(html)[1]
if len(df) == 0:
break
up[field[1]] = df[field[1]]
if len(up) == 0:
return up
soup = BeautifulSoup(html, 'lxml')
table = soup.find_all('table')[1]
trs = table.find_all('tr')
codes = []
for tr in trs[1:]:
tds = tr.find_all('td')
code = tds[1].a['href'].split('=')[1] if len(tds) >= 2 else None
codes.append(code)
up.insert(1, '종목코드', codes)
up.dropna(how='all', inplace=True)
up.reset_index(drop=True, inplace=True)
up['등락률'] = up['등락률'].astype(str).str.replace('%', '').replace(',', '').astype(float) / 100.0
up['ROE'] = up['ROE'] / 100.0
up['ROA'] = up['ROA'] / 100.0
up['유보율'] = up['유보율'] / 100.0
up = up[['N', '종목코드', '종목명', '현재가', '전일비', '등락률',
'거래량', '시가', '고가', '저가', '매수호가', '매도호가', '매수총잔량', '매도총잔량',
'거래대금', '전일거래량', '외국인비율', '상장주식수', '시가총액', '자산총계', '부채총계',
'매출액', '매출액증가율', '영업이익', '영업이익증가율', '당기순이익', '주당순이익', '보통주배당금',
'PER', 'ROE', 'ROA', 'PBR', '유보율']]
return up
def up():
return pd.concat([__up(0), __up(1)]).sort_values('등락률', ascending=False)
def free_float_rate(code):
'''
유동비율을 반환합니다 (100% 기준)
* code: 종목코드
'''
url = f'https://navercomp.wisereport.co.kr/v2/company/c1070001.aspx?cmp_cd={code}'
df_list = pd.read_html(url, encoding='utf-8')
df = df_list[1]
return float(df[('유동주식', '유동주식비율')][0].replace('%', ''))
class NaverSnapReader:
def __init__(self, ticker):
self.ticker = ticker.upper()
def read(self):
if self.ticker.startswith('NAVER/FINSTATE'):
tokens = self.ticker.split('/')
if len(tokens) < 3:
usage_text = '''Usage examples:
NAVER/FINSTATE/005930
NAVER/FINSTATE-Q/005930
NAVER/FINSTATE-Q1/005930
NAVER/FINSTATE-Y/005930
NAVER/FINSTATE-Y3/005930
'''
raise ValueError(usage_text)
fin_type, freq='0', 'Y' # default
if '-' in tokens[1]:
for ch in tokens[1].split('-')[1]: # for each char in options
fin_type = ch if ch in '01234' else fin_type
freq = ch if ch in 'YQA' else freq
code = tokens[2]
return finstate_summary(code, fin_type, freq)
elif self.ticker.startswith('NAVER/INVESTORS'):
tokens = self.ticker.split('/')
if len(tokens) < 3:
usage_text = '''Usage examples:
NAVER/INVESTORS/005930
NAVER/INVESTORS/000660
'''
raise ValueError(usage_text)
return investors(tokens[2])
else:
raise NotImplementedError(f'"{self.ticker}" is not implemented')