Skip to content

FengxiangHe/activation-code

 
 

Repository files navigation

Neural networks behave as hash encoders: An empirical study

This repository contains the code for the paper "Neural networks behave as hash encoders: An empirical study" by Fengxiang He, Shiye Lei, Jianmin Ji, and Dacheng Tao.

Experimental results

  • Model capacity model_capacity

  • Training time training_time

  • Sample size sample_size

Instructions

Dependencies

  • Python3.6
  • Tensorflow1.9
  • Keras2.2
  • MNIST dataset
  • CIFAR-10 dataset

Training

1. Model capacity
  • For MNIST: python run_layer_width_train_mlp.py --dataset mnist --depth 1 --begin_repeat 1 --repeat 10
  • For CIFAR-10: python run_layer_width_train_mlp.py --dataset cifar10 --depth 5 --begin_repeat 1 --repeat 10
2. Sample size
  • For MNIST: python run_sample_size_train_mlp.py --dataset mnist --depth 1 --begin_repeat 1 --repeat 10
  • For CIFAR-10: python run_sample_size_train_mlp.py --dataset cifar10 --depth 5 --begin_repeat 1 --repeat 10
3. Training time
  • For MNIST: python run_training_time_train_mlp.py --dataset mnist --depth 1 --begin_repeat 1 --repeat 10
  • For CIFAR-10: python run_training_time_train_mlp.py --dataset cifar10 --depth 5 --begin_repeat 1 --repeat 10

Compute and evaluate encoding properties

1. Model capacity
  • For MNIST: python run_layer_width_encoding_properties.py --dataset mnist --depth 1 --begin_repeat 1 --repeat 10
  • For CIFAR-10: python run_layer_width_encoding_properties.py --dataset cifar10 --depth 5 --begin_repeat 1 --repeat 10
2. Sample size
  • For MNIST: python run_sample_size_encoding_properties.py --dataset mnist --depth 1 --begin_repeat 1 --repeat 10
  • For CIFAR-10: python run_sample_size_encoding_properties.py --dataset cifar10 --depth 5 --begin_repeat 1 --repeat 10
3. Training time
  • For MNIST: python run_training_time_encoding_properties.py --dataset mnist --depth 1 --begin_repeat 1 --repeat 10
  • For CIFAR-10: python run_training_time_encoding_properties.py --dataset cifar10 --depth 5 --begin_repeat 1 --repeat 10

Well-trained model

For the well-trained models in our paper, please kindly contact Shiye Lei at leishiye@gmail.com.

Citation

@article{he2021neural,
  title={Neural networks behave as hash encoders: An empirical study},
  author={He, Fengxiang and Lei, Shiye and Ji, Jianmin and Tao, Dacheng},
  journal={arXiv preprint arXiv:2101.05490},
  year={2020}
}

Contact

For any issue, please kindly contact

Fengxiang He: fengxiang.f.he@gmail.com
Shiye Lei: leishiye@gmail.com
Jianmin Ji: jianmin@ustc.edu.cn
Dacheng Tao: dacheng.tao@sydney.edu.au

--

Last update: Fri 15 Jan 2021

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%