-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
59e8d38
commit fa56fe3
Showing
2 changed files
with
205 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
include("decompositionW2.jl") | ||
include("Clique_sm.jl") | ||
include("mx_func.jl") | ||
include("StarW.jl") | ||
include("Filter_fast2.jl") | ||
include("h_scoreW.jl") | ||
include("INC3.jl") | ||
include("sparsification.jl") | ||
include("HyperNodes.jl") | ||
include("Mapping_fast.jl") | ||
include("Unmapping.jl") | ||
include("decompositionW2.jl") | ||
|
||
|
||
|
||
using SparseArrays | ||
using LinearAlgebra | ||
using Clustering | ||
using NearestNeighbors | ||
using Distances | ||
using Laplacians | ||
using Arpack | ||
using Statistics | ||
using DelimitedFiles | ||
using StatsBase | ||
using Laplacians#master | ||
using Random | ||
|
||
using PyCall | ||
|
||
function SPF(PyA, L, ICr) | ||
|
||
m, n = PyA.shape | ||
colPtr = Int[i+1 for i in PyArray(PyA."indptr")] | ||
rowVal = Int[i+1 for i in PyArray(PyA."indices")] | ||
nzVal = Vector{Float64}(PyArray(PyA."data")) | ||
A = SparseMatrixCSC{Float64,Int64}(m, n, colPtr, rowVal, nzVal) | ||
|
||
fdnz = findnz(tril(A, -1)) | ||
|
||
rr = fdnz[1] | ||
cc = fdnz[2] | ||
W = fdnz[3] | ||
|
||
ar = Any[] | ||
|
||
for ii = 1:length(rr) | ||
|
||
push!(ar, sort([rr[ii], cc[ii]])) | ||
|
||
end | ||
|
||
ar_org = copy(ar) | ||
|
||
RedR = 1 | ||
|
||
#@time ar, idx_mat, ar_mat, Emat = decompositionW2(ar, L, RedR, W) | ||
@time ar, idx_mat, ar_mat, Emat = decompositionW2_fast(A, L) | ||
|
||
avgN = mx_func(ar_org) / mx_func(ar) | ||
println("-------------avgN = ", avgN) | ||
|
||
Lmat = length(ar_mat) | ||
|
||
NN = [1,Lmat] | ||
|
||
arF, V = sparsification(NN, ar, idx_mat, ar_mat) | ||
|
||
## Adding inter-cluster edges | ||
V = 1:mx_func(ar) | ||
|
||
for ii = 1:length(idx_mat) | ||
|
||
id1 = idx_mat[end-ii+1] | ||
|
||
V = V[id1] | ||
|
||
end | ||
|
||
dict2 = Dict{Any, Any}() | ||
|
||
for ii =1:length(ar_org) | ||
|
||
nd1 = sort(ar_org[ii]) | ||
|
||
Vnd = sort(V[nd1]) | ||
|
||
if Vnd[1]!=Vnd[2] | ||
|
||
vals = get!(Array{Int64,1},dict2, Vnd) | ||
|
||
push!(vals, ii) | ||
|
||
end | ||
|
||
end # for ii | ||
|
||
KS = collect(keys(dict2)) | ||
|
||
VL = collect(values(dict2)) | ||
|
||
EM1 = Emat[1] | ||
|
||
for ii = 1:length(VL) | ||
|
||
vl1 = VL[ii] | ||
|
||
SP = sortperm(EM1[vl1]) | ||
|
||
TH = ceil(Int, length(SP) * ICr) | ||
|
||
ES = vl1[SP[1:TH]] | ||
|
||
append!(arF, ar_org[ES]) | ||
|
||
end | ||
|
||
println("-------------Density = ", length(arF)/mx_func(arF)) | ||
|
||
AS = Clique_sm(arF) | ||
|
||
# Import the required Python library | ||
scipy_sparse = pyimport("scipy.sparse") | ||
# Extract the components of the SparseMatrixCSC and adjust indices for 0-based Python | ||
indptr = AS.colptr .- 1 # Subtract 1 for Python's 0-based indexing | ||
indices = AS.rowval .- 1 # Subtract 1 for Python's 0-based indexing | ||
data = AS.nzval | ||
# Create a scipy.sparse.csr_matrix in Python directly using Julia arrays | ||
PyAS = scipy_sparse.csr_matrix((data, indices, indptr), shape=(AS.m, AS.n)) | ||
|
||
return PyAS | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
using LinearAlgebra | ||
using LinearMaps | ||
using MAT | ||
using SparseArrays | ||
using Arpack | ||
|
||
using PyCall, SparseArrays | ||
|
||
function scipyCSC_to_julia(A) | ||
m, n = A.shape | ||
colPtr = Int[i+1 for i in PyArray(A."indptr")] | ||
rowVal = Int[i+1 for i in PyArray(A."indices")] | ||
nzVal = Vector{Float64}(PyArray(A."data")) | ||
B = SparseMatrixCSC{Float64,Int}(m, n, colPtr, rowVal, nzVal) | ||
return PyCall.pyjlwrap_new(B) | ||
end | ||
|
||
|
||
function main(PyX, PyY, k::Int64) | ||
|
||
rowval = Int[i+1 for i in PyArray(PyX."row")] | ||
colval = Int[i+1 for i in PyArray(PyX."col")] | ||
Val = Vector{Float64}(PyArray(PyX."data")) | ||
X = sparse(rowval, colval, Val) | ||
|
||
rowval = Int[i+1 for i in PyArray(PyY."row")] | ||
colval = Int[i+1 for i in PyArray(PyY."col")] | ||
Val = Vector{Float64}(PyArray(PyY."data")) | ||
Y = sparse(rowval, colval, Val) | ||
|
||
|
||
|
||
(Λ, V) = eigs(X, Y, nev=k, tol=1e-6, which=:LM) | ||
|
||
return Λ, V | ||
end | ||
|
||
function not_main(PyX, k::Int64) | ||
|
||
rowval = Int[i+1 for i in PyArray(PyX."row")] | ||
colval = Int[i+1 for i in PyArray(PyX."col")] | ||
Val = Vector{Float64}(PyArray(PyX."data")) | ||
X = sparse(rowval, colval, Val) | ||
|
||
(Λ, V) = eigs(X, nev=k, which=:SM,maxiter=500000) | ||
|
||
idx = sortperm(abs.(Λ)) | ||
Λ_sorted = Λ[idx] | ||
V_sorted = V[:, idx] | ||
|
||
# Remove the first (smallest) eigenvalue and corresponding eigenvector | ||
Λ_sorted = Λ_sorted[2:end] | ||
V_sorted = V_sorted[:, 2:end] | ||
return Λ_sorted, V_sorted | ||
end | ||
|
||
function plot_main(PyX, k::Int64) | ||
|
||
rowval = Int[i+1 for i in PyArray(PyX."row")] | ||
colval = Int[i+1 for i in PyArray(PyX."col")] | ||
Val = Vector{Float64}(PyArray(PyX."data")) | ||
X = sparse(rowval, colval, Val) | ||
|
||
(Λ, V) = eigs(X, nev=k, which=:SM,maxiter=500000) | ||
|
||
idx = sortperm(abs.(Λ)) | ||
Λ_sorted = Λ[idx] | ||
V_sorted = V[:, idx] | ||
|
||
return Λ_sorted, V_sorted | ||
end | ||
|