-
Notifications
You must be signed in to change notification settings - Fork 0
/
loader.py
198 lines (167 loc) · 6.56 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#encoding=utf8
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
#sys.path.insert(0, '/home/healthai/tensorflow-1.0')
import tensorflow as tf
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import random_seed
from tensorflow.contrib.learn.python.learn.datasets import base
import math
import numpy as np
import pandas as pd
import functools as ft
import csv
import os
np.set_printoptions(threshold=np.nan)
class DataSet(object):
def __init__(self,
images,
labels,
weights,
dtype=dtypes.float32,
seed=None):
self.check_data(images, labels)
seed1, seed2 = random_seed.get_seed(seed)
self._org_images = images
self._org_labels = labels
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
self._total_batches = images.shape[0]
self.weights = weights
def check_data(self, images, labels):
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def total_batches(self):
return self._total_batches
@property
def epochs_completed(self):
return self._epochs_completed
def shuffle(self):
perm = np.arange(self._org_labels.shape[0])
np.random.shuffle(perm)
return self._org_images[perm], self._org_labels[perm]
def balance(self): ##rb 1hour [5,5,1]
ys = np.argmax(self._org_labels, axis=1)
p = np.zeros(len(ys))
for i, weight in enumerate(self.weights):
p[ys==i] = weight
perm = np.random.choice(np.arange(len(ys)), size=len(ys), replace=True, p=np.array(p)/p.sum())
return self._org_images[perm], self._org_labels[perm]
def next_batch(self, batch_size, shuffle=True):
start = self._index_in_epoch
# first epoch shuffle
if self._epochs_completed == 0 and start == 0 and shuffle:
#self._images, self._labels = self.balance()
self._images, self._labels = self.shuffle()
# next epoch
if start + batch_size <= self._total_batches:
self._index_in_epoch += batch_size
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
# if the epoch is ending
else:
self._epochs_completed += 1
# store what is left of this epoch
batches_left = self._total_batches - start
images_left = self._images[start:self._total_batches]
labels_left = self._labels[start:self._total_batches]
# shuffle for new epoch
if shuffle:
#self._images, self._labels = self.balance()
self._images, self._labels = self.shuffle()
# start next epoch
start = 0
self._index_in_epoch = batch_size - batches_left
end = self._index_in_epoch
images_new = self._images[start:end]
labels_new = self._labels[start:end]
return np.concatenate((images_left, images_new), axis=0), np.concatenate((labels_left, labels_new), axis=0)
def load_csv(fname, col_start=1, row_start=0, delimiter=",", dtype=dtypes.float32):
data = np.genfromtxt(fname, delimiter=delimiter)
for _ in range(col_start):
data = np.delete(data, (0), axis=1)
for _ in range(row_start):
data = np.delete(data, (0), axis=0)
# print(np.transpose(data))
return data
# stock data loading
def load_stock_data(path, moving_window=128, columns=6, train_test_ratio=9.0, rate = 1.02):
# process a single file's data into usable arrays
def process_data(data):
stock_set = np.zeros([0,moving_window,columns])
label_set = np.zeros([0,3])
for idx in range(data.shape[0] - (moving_window + 3)):
stock_set = np.concatenate((stock_set, np.expand_dims(data[range(idx,idx+(moving_window)),:], axis=0)), axis=0)
# if data[idx+(moving_window+3),3] >= data[idx+(moving_window),3]*rate or\
if data[idx+(moving_window+2),3] >= data[idx+(moving_window),3]*rate or\
data[idx+(moving_window+1),3] >= data[idx+(moving_window),3]*rate :
lbl = [[1.0, 0.0, 0.0]]
# elif data[idx+(moving_window+3),3]*rate <= data[idx+(moving_window),3] or\
elif data[idx+(moving_window+2),3]*rate <= data[idx+(moving_window),3] or\
data[idx+(moving_window+1),3]*rate <= data[idx+(moving_window),3] :
lbl = [[0.0, 1.0, 0.0]]
else:
lbl = [[0.0, 0.0, 1.0]]
label_set = np.concatenate((label_set, lbl), axis=0)
# label_set = np.concatenate((label_set, np.array([data[idx+(moving_window+5),3] - data[idx+(moving_window),3]])))
# print(stock_set.shape, label_set.shape)
return stock_set, label_set
# read a directory of data
stocks_set = np.zeros([0,moving_window,columns])
labels_set = np.zeros([0,3])
if os.path.isfile(path):
print(path)
ss, ls = process_data(load_csv(path))
stocks_set = np.concatenate((stocks_set, ss), axis=0)
labels_set = np.concatenate((labels_set, ls), axis=0)
# shuffling the data
perm = np.arange(labels_set.shape[0])
np.random.shuffle(perm)
stocks_set = stocks_set[perm]
labels_set = labels_set[perm]
labels = np.argmax(labels_set, axis=1)
label_hist = np.histogram(labels, bins=[0,1,2,3])[0]
print 'labels hist', label_hist
# normalize the data
stocks_set_ = np.zeros(stocks_set.shape)
for i in range(len(stocks_set)):
min = stocks_set[i].min(axis=0)
max = stocks_set[i].max(axis=0)
# print i,min,max
stocks_set_[i] = (stocks_set[i] - min) / (max - min)
stocks_set = stocks_set_
# labels_set = np.transpose(labels_set)
# selecting 1/5 for testing, and 4/5 for training
train_test_idx = int((1.0 / (train_test_ratio + 1.0)) * labels_set.shape[0])
train_stocks = stocks_set[train_test_idx:,:,:]
train_labels = labels_set[train_test_idx:]
test_stocks = stocks_set[:train_test_idx,:,:]
test_labels = labels_set[:train_test_idx]
max_ = np.max(label_hist)
weights = np.ceil(max_*1.0/label_hist).tolist()
weights = weights/np.max(weights)
print 'weights', weights
print train_stocks.shape
print train_labels.shape
train = DataSet(train_stocks, train_labels, weights)
test = DataSet(test_stocks, test_labels, weights)
return base.Datasets(train=train, validation=None, test=test), weights
# db = load_stock_data("data/short/")
# images, labels = db.train.next_batch(10)
# print(images.shape, labels.shape)
# print(images, labels)
if __name__ == '__main__':
# db = load_stock_data("data/rb000(30分钟).csv")
name = 'i9888_60min'
db, _ = load_stock_data("data20190508/{}.csv".format(name), rate=1.01)
images, labels = db.train.next_batch(64)