Skip to content

Emersonzc/LAReViT

 
 

Repository files navigation

Local-Aware Residual Attention Vision Transformer (LAReViT)

Pytorch code for paper "Local-Aware Transformers with Attention Residual Connections for Visible-Infrared Person Re-Identification"

1. Results

We adopt the Transformer as backbone respectively.

Datasets Backbone Rank@1 Rank@10 Rank@20 mAP mINP Model -
#SYSU-MM01 Transformer 76.71% 97.33% 99.05% 72.95% 60.18% GoogleDrive Baidu Netdisk

*The results may exhibit fluctuations due to random splitting, and further improvement can be achieved by fine-tuning the hyperparameters.

2. Datasets

  • RegDB [1]: The RegDB dataset can be downloaded from this website.

  • SYSU-MM01 [2]: The SYSU-MM01 dataset can be downloaded from this website.

    • run python pre_process_sysu.py to pepare the dataset, the training data will be stored in ".npy" format.

      python pre_process_sysu.py
      
  • LLCM [5]: The LLCM dataset can be downloaded by sending a signed dataset release agreement copy to zhangyk@stu.xmu.edu.cn.

3. Training

Train LAReViT by

python train.py --dataset sysu --gpu 0
  • --dataset: which dataset "sysu", "regdb" or "llcm".

  • --gpu: which gpu to run.

You may need manually define the data path first.

4. Testing

Test a model on SYSU-MM01 dataset by

python test.py --dataset 'sysu' --mode 'all' --resume 'model_path'  --gpu 0
  • --dataset: which dataset "sysu".
  • --mode: "all" or "indoor" (only for sysu dataset).
  • --resume: the saved model path.
  • --gpu: which gpu to use.

Test a model on RegDB dataset by

python test.py --dataset 'regdb' --resume 'model_path'  --tvsearch True --gpu 0
  • --tvsearch: whether thermal to visible search True or False (only for regdb dataset).

Test a model on LLCM dataset by

python test.py --dataset 'llcm' --resume 'model_path'  --gpu 0

5. References.

[1] Lu H, Zou X, Zhang P. Learning progressive modality-shared transformers for effective visible-infrared person re-identification[C]//Proceedings of the AAAI conference on Artificial Intelligence. 2023, 37(2): 1835-1843.

[2] He S, Luo H, Wang P, et al. Transreid: Transformer-based object re-identification[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 15013-15022.

[3] Diko A, Avola D, Cascio M, et al. ReViT: Enhancing Vision Transformers with Attention Residual Connections for Visual Recognition[J]. arXiv preprint arXiv:2402.11301, 2024.

[4] Ni H, Li Y, Gao L, et al. Part-aware transformer for generalizable person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 11280-11289.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%