-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtorch_utils.py
240 lines (192 loc) · 9.18 KB
/
torch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# PyTorch utils
import logging
import math
import os
import time
from contextlib import contextmanager
from copy import deepcopy
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torchvision
logger = logging.getLogger(__name__)
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""
Decorator to make all processes in distributed training wait for each local_master to do something.
"""
if local_rank not in [-1, 0]:
torch.distributed.barrier()
yield
if local_rank == 0:
torch.distributed.barrier()
def init_torch_seeds(seed=0):
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(seed)
if seed == 0: # slower, more reproducible
cudnn.deterministic = True
cudnn.benchmark = False
else: # faster, less reproducible
cudnn.deterministic = False
cudnn.benchmark = True
def select_device(device='', batch_size=None):
# device = 'cpu' or '0' or '0,1,2,3'
cpu_request = device.lower() == 'cpu'
if device and not cpu_request: # if device requested other than 'cpu'
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
cuda = False if cpu_request else torch.cuda.is_available()
if cuda:
c = 1024 ** 2 # bytes to MB
ng = torch.cuda.device_count()
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
s = f'Using torch {torch.__version__} '
for i in range(0, ng):
if i == 1:
s = ' ' * len(s)
logger.info("%sCUDA:%g (%s, %dMB)" % (s, i, x[i].name, x[i].total_memory / c))
else:
logger.info(f'Using torch {torch.__version__} CPU')
logger.info('') # skip a line
return torch.device('cuda:0' if cuda else 'cpu')
def time_synchronized():
torch.cuda.synchronize() if torch.cuda.is_available() else None
return time.time()
def is_parallel(model):
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
def intersect_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
def initialize_weights(model):
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
m.inplace = True
def find_modules(model, mclass=nn.Conv2d):
# Finds layer indices matching module class 'mclass'
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
def sparsity(model):
# Return global model sparsity
a, b = 0., 0.
for p in model.parameters():
a += p.numel()
b += (p == 0).sum()
return b / a
def prune(model, amount=0.3):
# Prune model to requested global sparsity
import torch.nn.utils.prune as prune
print('Pruning model... ', end='')
for name, m in model.named_modules():
if isinstance(m, nn.Conv2d):
prune.l1_unstructured(m, name='weight', amount=amount) # prune
prune.remove(m, 'weight') # make permanent
print(' %.3g global sparsity' % sparsity(model))
def fuse_conv_and_bn(conv, bn):
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
fusedconv = nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
groups=conv.groups,
bias=True).requires_grad_(False).to(conv.weight.device)
# prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
# prepare spatial bias
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fusedconv
def model_info(model, verbose=False, img_size=640):
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
if verbose:
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
try: # FLOPS
from thop import profile
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, img_size, img_size),), verbose=False)[0] / 1E9 * 2
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
fs = ', %.9f GFLOPS' % (flops) # 640x640 FLOPS
except (ImportError, Exception):
fs = ''
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
def load_classifier(name='resnet101', n=2):
# Loads a pretrained model reshaped to n-class output
model = torchvision.models.__dict__[name](pretrained=True)
# ResNet model properties
# input_size = [3, 224, 224]
# input_space = 'RGB'
# input_range = [0, 1]
# mean = [0.485, 0.456, 0.406]
# std = [0.229, 0.224, 0.225]
# Reshape output to n classes
filters = model.fc.weight.shape[1]
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
model.fc.out_features = n
return model
def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
# scales img(bs,3,y,x) by ratio
if ratio == 1.0:
return img
else:
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
if not same_shape: # pad/crop img
gs = 32 # (pixels) grid size
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
def copy_attr(a, b, include=(), exclude=()):
# Copy attributes from b to a, options to only include [...] and to exclude [...]
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
continue
else:
setattr(a, k, v)
class ModelEMA:
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
Keep a moving average of everything in the model state_dict (parameters and buffers).
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
"""
def __init__(self, model, decay=0.9999, updates=0):
# Create EMA
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
# if next(model.parameters()).device.type != 'cpu':
# self.ema.half() # FP16 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
def update(self, model):
# Update EMA parameters
with torch.no_grad():
self.updates += 1
d = self.decay(self.updates)
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point:
v *= d
v += (1. - d) * msd[k].detach()
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
# Update EMA attributes
copy_attr(self.ema, model, include, exclude)