TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones
Zhengqing Yuan✟, Zhaoxu Li❁, Weiran Huang❋, Yanfang Ye✟, Lichao Sun❁
✟University of Notre Dame, ❁Lehigh University, ❋Shanghai Jiao Tong University
Zhaoxu is a visiting student in the LAIR lab at Lehigh University.
English | 简体中文
[Apr.08 2024] Update our paper v2. We revised some type errors, provided more details and updated TinyGPT-V lastest results.
[Mar.20 2024] Update the Phi-2 weight download link.
[Jan.22 2024] Welcome to Hugging Face online demo to try out our models (for Stage-4 v1)!
[Jan.19 2024] Major Updates! We are officially releasing v1 of TinyGPT-V! After our evaluation, the performance of TinyGPT-V has reached 98% of InstructBLIP's performance and exceeds the performance of other models of the same period!
[Jan.03 2024] Welcome to Hugging Face online demo to try out our models (for Stage-3)!
[Dec.28 2023] Breaking! We release the code of our TinyGPT-V.
1. Prepare the code and the environment
Git clone our repository, creating a python environment and activate it via the following command
git clone https://github.com/DLYuanGod/TinyGPT-V.git
cd TinyGPT-V
conda env create -f environment.yml
conda activate tinygptv
2. Prepare the pretrained LLM weights
TinyGPT-V is based on Phi-2. Download the corresponding LLM weights from the following huggingface space via clone the repository using git-lfs.
Phi-2 2.7B: Download
Then, set the variable phi_model in the model config file to the LLM weight path.
3. Prepare the pretrained model checkpoints
Download the pretrained model checkpoints
After stage-1 | After stage-2 | After stage-3 | After stage-4 |
---|---|---|---|
Download | Download | Download | Download |
For TinyGPT-V, set the path to the pretrained checkpoint in the evaluation config file in tinygptv_stage1_2_3_eval.yaml at Line 8 for Stage 1, 2 and 3 version or tinygptv_stage4_eval.yaml for Stage 4 version.
4. Update the Phi-2 Modeling for transformers lib.
Linux system:
cp modeling_phi.py /root/miniconda3/envs/tinygptv/lib/python3.9/site-packages/transformers/models/phi/
Windows system
Find your conda yourself: conda_sit/envs/tinygptv/lib/python3.9/site-packages/transformers/models/phi/ Replace modeling_phi.py in that directory with the one in TinyGPT-V/modeling_phi.py.
For Stage 4, run
python demo_v2.py --cfg-path eval_configs/tinygptv_stage4_eval.yaml --gpu-id 0
Note: Stage 4 will have some Grounding abilities. But the performance is not very good, we are working on this!
For Stage 1, 2 and 3, run
python demo.py --cfg-path eval_configs/tinygptv_stage1_2_3_eval.yaml --gpu-id 0
To perfer more powerful model, LLMs loads as 16 bit by default. This configuration requires about 8G GPU memory.
To more save GPU memory, you can run the model
in 8 bit below 8G device by setting low_resource
to True
in the relevant config file:
-
Stage 4 tinygptv_stage4_eval.yaml
-
Stage 1, 2 and 3 tinygptv_stage1_2_3_eval.yaml
First you need to adjust all the updated weights in the LLM to be calculated with full precision:Here. Remove the comments from the following lines:
layer.self_attn.q_layernorm.weight.data = layer.self_attn.q_layernorm.weight.data.float()
layer.self_attn.k_layernorm.weight.data = layer.self_attn.k_layernorm.weight.data.float()
layer.post_layernorm.weight.data = layer.post_layernorm.weight.data.float()
layer.input_layernorm.weight.data = layer.input_layernorm.weight.data.float()
# Perform a similar operation for the bias item
if layer.self_attn.q_layernorm.bias is not None:
layer.self_attn.q_layernorm.bias.data = layer.self_attn.q_layernorm.bias.data.float()
if layer.self_attn.k_layernorm.bias is not None:
layer.self_attn.k_layernorm.bias.data = layer.self_attn.k_layernorm.bias.data.float()
if layer.input_layernorm.bias is not None:
layer.input_layernorm.bias.data = layer.input_layernorm.bias.data.float()
llama_model.model.model.final_layernorm.weight.requires_grad = True
llama_model.model.model.final_layernorm.weight.data = llama_model.model.model.final_layernorm.weight.data.float()
if llama_model.model.model.final_layernorm.bias is not None:
llama_model.model.model.final_layernorm.bias.data = llama_model.model.model.final_layernorm.bias.float()
Stage 1 and 2:
-
Then run:
torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/tinygptv_stage1.yaml
You need to execute the above code 17 times to complete the first stage of training.
- Then run:
torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/tinygptv_stage2.yaml
Stage 3:
-
Datasets: stage 3 dataset preparation instruction
-
Then run:
torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/tinygptv_stage3.yaml
Stage 4:
-
Datasets: stage 4 dataset preparation instruction.
-
Then run:
torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/tinygptv_stage4.yaml
For eval. details of TinyGPT-V, check here
- MiniGPT A very versatile model of MLLMs.
If you're using TinyGPT-V in your research or applications, please cite using this BibTeX:
@misc{yuan2024tinygptv,
title={TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones},
author={Zhengqing Yuan and Zhaoxu Li and Weiran Huang and Yanfang Ye and Lichao Sun},
year={2024},
eprint={2312.16862},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
This repository is under BSD 3-Clause License. Many codes are based on Lavis with BSD 3-Clause License here.