Skip to content

Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

License

Notifications You must be signed in to change notification settings

DANVEZ/ColossalAI

 
 

Repository files navigation

Colossal-AI

logo

An integrated large-scale model training system with efficient parallelization techniques.

Installation

PyPI

pip install colossalai

This command will install CUDA extension if your have installed CUDA, NVCC and torch.

If you don't want to install CUDA extension, you should add --global-option="--no_cuda_ext", like:

pip install colossalai --global-option="--no_cuda_ext"

If you want to use ZeRO, you can run:

pip install colossalai[zero]

Install From Source

The documentation will be in line with the main branch of the repository. Feel free to raise an issue if you encounter any problem. :)

git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI
# install dependency
pip install -r requirements/requirements.txt

# install colossalai
pip install .

If you don't want to install and enable CUDA kernel fusion (compulsory installation when using fused optimizer):

pip install --global-option="--no_cuda_ext" .

Use Docker

Run the following command to build a docker image from Dockerfile provided.

cd ColossalAI
docker build -t colossalai ./docker

Run the following command to start the docker container in interactive mode.

docker run -ti --gpus all --rm --ipc=host colossalai bash

Contributing

If you wish to contribute to this project, you can follow the guideline in Contributing

Quick View

Start Distributed Training in Lines

import colossalai
from colossalai.utils import get_dataloader


# my_config can be path to config file or a dictionary obj
# 'localhost' is only for single node, you need to specify
# the node name if using multiple nodes
colossalai.launch(
    config=my_config,
    rank=rank,
    world_size=world_size,
    backend='nccl',
    port=29500,
    host='localhost'
)

# build your model
model = ...

# build you dataset, the dataloader will have distributed data
# sampler by default
train_dataset = ...
train_dataloader = get_dataloader(dataset=dataset,
                                shuffle=True
                                )


# build your
optimizer = ...

# build your loss function
criterion = ...

# build your lr_scheduler
engine, train_dataloader, _, _ = colossalai.initialize(
    model=model,
    optimizer=optimizer,
    criterion=criterion,
    train_dataloader=train_dataloader
)

# start training
engine.train()
for epoch in range(NUM_EPOCHS):
    for data, label in train_dataloader:
        engine.zero_grad()
        output = engine(data)
        loss = engine.criterion(output, label)
        engine.backward(loss)
        engine.step()

Write a Simple 2D Parallel Model

Let's say we have a huge MLP model and its very large hidden size makes it difficult to fit into a single GPU. We can then distribute the model weights across GPUs in a 2D mesh while you still write your model in a familiar way.

from colossalai.nn import Linear2D
import torch.nn as nn


class MLP_2D(nn.Module):

    def __init__(self):
        super().__init__()
        self.linear_1 = Linear2D(in_features=1024, out_features=16384)
        self.linear_2 = Linear2D(in_features=16384, out_features=1024)

    def forward(self, x):
        x = self.linear_1(x)
        x = self.linear_2(x)
        return x

Features

Colossal-AI provides a collection of parallel training components for you. We aim to support you to write your distributed deep learning models just like how you write your single-GPU model. We provide friendly tools to kickstart distributed training in a few lines.

  • Data Parallelism
  • Pipeline Parallelism
  • 1D, 2D, 2.5D, 3D and sequence parallelism
  • Friendly trainer and engine
  • Extensible for new parallelism
  • Mixed Precision Training
  • Zero Redundancy Optimizer (ZeRO)

Please visit our documentation and tutorials for more details.

Cite Us

@article{bian2021colossal,
  title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training},
  author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang},
  journal={arXiv preprint arXiv:2110.14883},
  year={2021}
}

About

Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 79.4%
  • Cuda 13.3%
  • C++ 7.2%
  • Other 0.1%