-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
724 lines (635 loc) · 27.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
import importlib
import argparse, os, sys, datetime, glob
import builtins
import torch
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
from omegaconf import OmegaConf
from torch.utils.data import DataLoader, Dataset
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
import time
import shutil
from pytorch_lightning.utilities import rank_zero_info
import numpy as np
import logging
def print(*args, **kwargs):
if int(os.environ.get('LOCAL_RANK', 0)) == 0:
builtins.print(*args, **kwargs)
class CUDACallback(Callback):
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
def on_train_epoch_start(self, trainer, pl_module):
# Reset the memory use counter
torch.cuda.reset_peak_memory_stats(trainer.root_gpu)
torch.cuda.synchronize(trainer.root_gpu)
self.start_time = time.time()
def on_train_epoch_end(self, trainer, pl_module, outputs):
torch.cuda.synchronize(trainer.root_gpu)
max_memory = torch.cuda.max_memory_allocated(trainer.root_gpu) / 2**20
epoch_time = time.time() - self.start_time
try:
max_memory = trainer.training_type_plugin.reduce(max_memory)
epoch_time = trainer.training_type_plugin.reduce(epoch_time)
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
except AttributeError:
pass
class SetupCallback(Callback):
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
self.lightning_config = lightning_config
def on_pretrain_routine_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
# print("Project config")
# print(OmegaConf.to_yaml(self.config))
OmegaConf.save(
self.config,
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)),
)
# print("Lightning config")
# print(OmegaConf.to_yaml(self.lightning_config))
OmegaConf.save(
OmegaConf.create({"lightning": self.lightning_config}),
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)),
)
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(
self,
batch_size,
train=None,
validation=None,
test=None,
predict=None,
wrap=False,
num_workers=None,
shuffle_test_loader=False,
use_worker_init_fn=False,
shuffle_val_dataloader=False,
):
super().__init__()
self.batch_size = batch_size
self.dataset_configs = dict()
self.num_workers = num_workers if num_workers is not None else batch_size * 2
self.use_worker_init_fn = use_worker_init_fn
if train is not None:
self.dataset_configs["train"] = train
self.train_dataloader = self._train_dataloader
if validation is not None:
self.dataset_configs["validation"] = validation
self.val_dataloader = self._val_dataloader
if test is not None:
self.dataset_configs["test"] = test
self.test_dataloader = self._test_dataloader
# self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
self.wrap = wrap
def prepare_data(self):
for data_cfg in self.dataset_configs.values():
instantiate_from_config_input_dict(data_cfg) # !! input dict
def setup(self, stage=None): ## Init The Dataset !!
self.datasets = dict(
(
k,
instantiate_from_config_input_dict(self.dataset_configs[k]),
) # !! Input params dict
for k in self.dataset_configs
)
if self.wrap:
for k in self.datasets:
self.datasets[k] = WrappedDataset(self.datasets[k])
@staticmethod
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
def _train_dataloader(self):
return DataLoader(
self.datasets["train"],
batch_size=self.batch_size,
num_workers=self.num_workers,
worker_init_fn=self.worker_init_fn,
shuffle=True,
)
def _val_dataloader(self):
return DataLoader(
self.datasets["validation"],
batch_size=self.batch_size,
num_workers=self.num_workers,
worker_init_fn=self.worker_init_fn,
shuffle=False,
)
def _test_dataloader(self):
return DataLoader(
self.datasets["test"],
batch_size=self.batch_size,
num_workers=self.num_workers,
worker_init_fn=self.worker_init_fn,
shuffle=False,
)
class WrappedDataset(Dataset):
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def set_args(self, args):
self.data.set_args(args)
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit('.', 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not 'target' in config:
raise KeyError('Expected key `target` to instantiate.')
return get_obj_from_str(config['target'])(**config.get('params', dict()))
def instantiate_from_config_input_dict(config):
if not 'target' in config:
raise KeyError('Expected key `target` to instantiate.')
return get_obj_from_str(config['target'])(config.get('params', dict()))
def nondefault_trainer_args(opt):
parser = argparse.ArgumentParser()
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args([])
# print(vars(args))
# print(opt.__dict__)
return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
def run(opt, unknown):
seed_everything(opt.seed)
# Init and Save Configs: # DDP
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
print("Overwritting: ", cli)
config = OmegaConf.merge(*configs, cli)
if opt.no_test:
config.data.params.test = None
print(OmegaConf.to_yaml(config))
lightning_config = config.pop("lightning", OmegaConf.create())
# merge trainer cli with config
trainer_config = lightning_config.get("trainer", OmegaConf.create())
# default to ddp: !!!
trainer_config['accelerator'] = 'ddp'
# Non Default trainer Config:
for k in nondefault_trainer_args(opt):
trainer_config[k] = getattr(opt, k)
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
print(OmegaConf.to_yaml(lightning_config))
# Model:
if 'energy_cond_config' in config.model['params']: # legacy
del config.model['params']['energy_cond_config']
model = instantiate_from_config(config.model)
model.set_args(opt)
# trainer and callbacks:
trainer_kwargs = dict()
root_dir = os.getcwd()
default_logger_cfg = {
"target": "pytorch_lightning.loggers.WandbLogger",
"params": {
# "entity": 'avlp',
"project": opt.wandb_project,
"name": nowname,
"save_dir": os.path.join(root_dir, logdir),
"id": nowname,
}
}
if "logger" in lightning_config:
logger_cfg = lightning_config.logger
else:
logger_cfg = OmegaConf.create()
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
if not (opt.fast_dev_run or opt.test or opt.test_all or opt.visualize):
trainer_kwargs['logger'] = instantiate_from_config(logger_cfg)
default_modelckpt_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": os.path.join(root_dir, ckptdir),
# "monitor": "val/time_domain_loss",
# "filename": "{val/loss_simple_ema:.4f}_{epoch:03d}",
"filename": "{epoch:06d}",
"verbose": True,
"save_last": True,
'save_top_k': -1,
'period': config.checkpoint.save_every_n_epochs,
}
}
if hasattr(model, "monitor"):
print(f"Monitoring {model.monitor} as checkpoint metric.")
print("config.checkpoint.save_every_n_epochs", config.checkpoint.save_every_n_epochs)
default_modelckpt_cfg["params"]["monitor"] = model.monitor
if "modelcheckpoint" in lightning_config:
modelckpt_cfg = lightning_config.modelcheckpoint
else:
modelckpt_cfg = OmegaConf.create()
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
trainer_kwargs['checkpoint_callback'] = instantiate_from_config(modelckpt_cfg)
default_callbacks_cfg = {
"setup_callback": {
"target": "main.SetupCallback",
"params": {
"resume": opt.resume,
"now": now,
"logdir": logdir,
"ckptdir": ckptdir,
"cfgdir": cfgdir,
"config": config,
"lightning_config": lightning_config,
}
}
}
default_callbacks_cfg[config.callback.logger_name] = dict(config.callback)
default_callbacks_cfg['cuda_callback'] = {"target": "main.CUDACallback"}
if "callbacks" in lightning_config:
callbacks_cfg = lightning_config.callbacks
else:
callbacks_cfg = OmegaConf.create()
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
# Data:
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup()
for k in data.datasets:
data.datasets[k].set_args(opt)
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
# configure learning rate:
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
if 'accumulate_grad_batches' in lightning_config.trainer:
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
else:
accumulate_grad_batches = 1
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
if opt.scale_lr:
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
print("Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
else:
model.learning_rate = base_lr
print("+++ Not Using LR Scaling ++++")
print(f"Setting learning rate to {model.learning_rate:.2e}")
if opt.visualize:
from ldm.logger import generate_demo
# only run inference for one epoch and generate demos
dataloader = data.val_dataloader() if opt.test_val else data.test_dataloader()
split = 'val' if opt.test_val else 'test'
if not opt.compute_retrieval:
ckpt = torch.load(opt.resume_from_checkpoint, map_location='cpu')
print(f"Loaded model from {opt.resume_from_checkpoint}")
model.load_state_dict(ckpt['state_dict'])
model.eval()
epoch = int(opt.resume_from_checkpoint.split('=')[-1].split('.')[0])
output_dir = os.path.join(logdir, "sound_eval", split, "epoch_{}".format(epoch)) if opt.output_dir is None else opt.output_dir
if opt.output_postfix is not None:
output_dir = output_dir + '_' + opt.output_postfix
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
print('Remove existing folder {}'.format(output_dir))
os.makedirs(output_dir, exist_ok=True)
for batch_idx, batch in enumerate(dataloader):
if batch_idx >= opt.num_vis_batch:
break
generate_demo(model, batch, batch_idx, split, output_dir, args=opt)
exit()
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
trainer.logdir = logdir ## logdir
trainer.max_epochs = opt.epoch
if opt.test:
dataloader = data.val_dataloader() if opt.test_val else data.test_dataloader()
ckpt = torch.load(opt.resume_from_checkpoint, map_location='cpu')
model.load_state_dict(ckpt['state_dict'])
trainer.test(model, dataloader)
exit()
if opt.test_all:
dataloader = data.val_dataloader() if opt.test_val else data.test_dataloader()
# test all checkpoints in ckptdir
ckpts = glob.glob(os.path.join(ckptdir, 'epoch=*.ckpt'))
for ckpt_file in sorted(ckpts):
epoch_num = int(ckpt_file.split('=')[-1].split('.')[0])
ckpt = torch.load(ckpt_file, map_location='cpu')
model.load_state_dict(ckpt['state_dict'])
print(f"Testing {ckpt_file}")
trainer.current_epoch = epoch_num
trainer.test(model, dataloader)
model.save_test_stats(logdir, epoch_num)
exit()
# Checkpointing:
def melk(*args, **kwargs):
# run all checkponit hooks
if trainer.global_rank == 0 and not opt.fast_dev_run:
print("Summoning checkpoint")
ckpt_path = os.path.join(ckptdir, "last.ckpt")
trainer.save_checkpoint(ckpt_path)
def divein(*args, **kwargs):
if trainer.global_rank == 0:
import pudb;
pudb.set_trace()
import signal
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
# Run the Model:
if opt.train:
try:
trainer.fit(model, data)
except Exception:
melk()
raise
if not opt.no_test and not trainer.interrupted:
trainer.test(model, data.test_dataloader())
print("Finishing Training !!")
def process_videos(video_dir):
if "epic_kitchen_action_sounds" in video_dir:
return video_dir
processed_dir = os.path.join(video_dir, 'processed')
if os.path.exists(processed_dir):
return processed_dir
else:
os.makedirs(processed_dir, exist_ok=True)
for video in os.listdir(video_dir):
if not video.endswith('.mp4'):
continue
# process and keep the first 3 seconds
os.system('''ffmpeg -i {} -vf "scale=224:224" -ar 16000 -ac 1 -t 3 {}'''
.format(os.path.join(video_dir, video), os.path.join(processed_dir, video)))
return processed_dir
def prepare_metadata_for_demo(demo_dir):
import pandas as pd
processed_dir = process_videos(demo_dir)
# find all videos in demo_dir ending in mp4
videos = [os.path.basename(fp) for fp in glob.glob(os.path.join(processed_dir, '*.mp4'))]
csv_data = pd.DataFrame(columns=['video_uid', 'clip_file'])
for video in videos:
video_uid = video.split('.')[0]
csv_data = csv_data._append({'video_uid': video_uid, 'clip_file': video, 'clip_text': ''}, ignore_index=True)
print(f"Saving metadata for {len(videos)} videos in {demo_dir}")
print(csv_data.head())
csv_data.to_csv(os.path.join(demo_dir, 'metadata.csv'), index=False, sep='\t')
return processed_dir
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-n",
"--name",
type=str,
const=True,
default="",
nargs="?",
help="postfix for logdir",
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-t",
"--train",
type=str2bool,
const=True,
default=False,
nargs="?",
help="train",
)
parser.add_argument(
"--no-test",
type=str2bool,
const=True,
default=False,
nargs="?",
help="disable test",
)
parser.add_argument(
"-p", "--project", help="name of new or path to existing project"
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=72,
help="seed for seed_everything",
)
parser.add_argument(
"-f",
"--postfix",
type=str,
default="",
help="post-postfix for default name",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
default="data/logs/ego4d",
help="directory for logging dat shit",
)
parser.add_argument(
"--scale_lr",
type=str2bool,
nargs="?",
const=True,
default=True,
help="scale base-lr by ngpu * batch_size * n_accumulate",
)
parser.add_argument(
"--epoch",
type=int,
default=2000,
help="epoch num",
)
parser.add_argument(
"--wandb_project",
type=str,
default="ego4d_diffusion",
help="wandb project",
)
parser.add_argument("--test", default=False, action='store_true')
parser.add_argument("--test-all", default=False, action='store_true')
parser.add_argument("--num-nodes", default=1, type=int)
parser.add_argument("--batch-size", default=150, type=int)
parser.add_argument("--slurm", default=False, action='store_true')
parser.add_argument("--part", default='learnfair', type=str)
parser.add_argument("--pretrained-model", default='', type=str)
parser.add_argument("--resume-from-checkpoint", default=None, type=str)
parser.add_argument("--fast-dev-run", default=False, action='store_true')
parser.add_argument("--comment", default='', type=str)
parser.add_argument("--test-metrics", default='', type=str)
parser.add_argument("--test-val", default=False, action='store_true')
parser.add_argument("--use-rec-spec", default=False, action='store_true')
parser.add_argument("--use-input-spec", default=False, action='store_true')
parser.add_argument("--use-input-wav", default=False, action='store_true')
## args for dataloader
parser.add_argument("--left-nearest-k", default=3, type=int)
parser.add_argument("--right-nearest-k", default=3, type=int)
parser.add_argument("--neighbor-file", default='', type=str)
parser.add_argument("--audio-cond", default='rand_neighbor', type=str)
parser.add_argument("--seg-len", default=8000, type=int)
parser.add_argument("--lowest-k", default=1, type=int)
parser.add_argument("--num-frames", default=16, type=int)
parser.add_argument("--normalize", default=False, action='store_true', help="0: no normalization, 1: normalize waveform with librosa.utils.normalize")
parser.add_argument("--num-test-samples", default=-1, type=int)
## args for model
parser.add_argument("--pool-patches", default='mean', type=str)
parser.add_argument("--load-temporal-fix", default='zeros', type=str)
parser.add_argument("--pretrained-av-sim", default='data/pretrained/av.pth', type=str)
parser.add_argument("--pretrained-al-sim", default='data/pretrained/al.pth', type=str)
parser.add_argument("--ast-tdim", default=149, type=int)
parser.add_argument("--compute-retrieval", default=False, action='store_true')
## args for evaluation
parser.add_argument("--visualize", default=False, action='store_true')
parser.add_argument("--demo-dir", default=None, type=str) # given a video dir, generate examples for videos in that directory
parser.add_argument("--output-dir", default=None, type=str) # given a video dir, generate examples for videos in that directory
parser.add_argument("--output-postfix", default=None, type=str) # given a video dir, generate examples for videos in that directory
parser.add_argument("--vocoder", default=None, type=str, help="if None, use griffinlim, otherwise currently only support hifigan")
parser.add_argument("--cond-zero", default=False, action='store_true')
parser.add_argument("--low-ambient", default=False, action='store_true')
parser.add_argument("--mid-ambient", default=False, action='store_true')
parser.add_argument("--eval-ckpt", default=-1, type=int)
parser.add_argument("--num-vis-batch", default=2, type=int)
parser.add_argument("--eval-last", default=False, action='store_true')
parser.add_argument("--retrieve-nn", default=False, action='store_true')
parser.add_argument("--no-hifigan", default=False, action='store_true')
parser.add_argument("--save-test-stats", default=False, action='store_true')
return parser
if __name__ == "__main__":
# facilitate logging/debugging
formatter = (
"%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
parser = get_parser() # --base config_path.yaml --name exper1 --gpus 0, 1, 2
parser = Trainer.add_argparse_args(parser)
opt, unknown = parser.parse_known_args()
assert len([x for x in unknown if x.startswith('--') or x.startswith('-')]) == 0, f"Unknown args: {unknown}"
if opt.fast_dev_run:
opt.gpus = '0,'
opt.no_test = True
if opt.test or opt.test_all:
opt.train = False
opt.batch_size = 20
opt.test_metrics = 'fad,av_sim,al_sim,ambient,av_sync' if opt.test_metrics == '' else opt.test_metrics
opt.vocoder = 'hifigan' if not opt.no_hifigan else None
if opt.visualize:
# only generate demos and do not compute stats
opt.train = False
opt.gpus = '0,'
opt.batch_size = 50
opt.test_metrics = ''
opt.no_test = False
opt.vocoder = 'hifigan' if not opt.no_hifigan else None
unknown += ["data.params.num_workers=1"] # ensure no stochasticity in dataloader
if opt.retrieve_nn:
opt.output_postfix = 'retrieve_ambient' if opt.output_postfix is None else f"{opt.output_postfix}_retrieve_ambient"
if opt.low_ambient:
opt.neighbor_file = 'data/ego4dsounds_224p_test/89193e37-1ed4-4a65-996b-6883f2e1cf61/89193e37-1ed4-4a65-996b-6883f2e1cf61_narration_pass_1_12636.mp4'
opt.output_postfix = 'low_ambient' if opt.output_postfix is None else f"{opt.output_postfix}_low_ambient"
if opt.mid_ambient:
opt.neighbor_file = 'data/ego4dsounds_224p_test/82ace2ff-4a87-4abe-ba45-3965bbc13658/82ace2ff-4a87-4abe-ba45-3965bbc13658_narration_pass_1_4919.mp4'
opt.output_postfix = 'mid_ambient' if opt.output_postfix is None else f"{opt.output_postfix}_mid_ambient"
if opt.demo_dir is not None:
processed_dir = prepare_metadata_for_demo(opt.demo_dir)
opt.output_dir = os.path.join(opt.demo_dir, 'generated')
unknown += ["data.params.test.params.data_dir={}".format(processed_dir)]
unknown += ["data.params.test.params.metadata_file={}".format(os.path.join(opt.demo_dir, 'metadata.csv'))]
if opt.eval_last:
checkpoints = sorted(glob.glob(os.path.join(opt.logdir, opt.name, 'checkpoints', 'epoch=*.ckpt')))
opt.resume = checkpoints[-1]
if opt.eval_ckpt >= 0:
# pad to 6 digits
opt.resume = os.path.join(opt.logdir, opt.name, 'checkpoints', f'epoch={opt.eval_ckpt:06d}.ckpt')
if opt.cond_zero:
opt.output_postfix = 'cond_zero'
unknown += ["model.params.audio_cond_config.neighbor_audio_cond_prob=0.0"]
if opt.seed != 72:
opt.output_postfix = f"seed{opt.seed}" if opt.output_postfix == '' else f"{opt.output_postfix}_seed{opt.seed}"
if opt.compute_retrieval:
opt.test_metrics = 'fad,av_sim,al_sim,ambient,av_sync'
unknown += ["data.params.batch_size={}".format(opt.batch_size)]
unknown += ["model.params.test_metrics={}".format(opt.test_metrics)] if opt.test_metrics != '' else []
unknown += ["model.params.pretrained_video_extractor={}".format(opt.pretrained_model)] if opt.pretrained_model != '' else []
unknown += ["model.params.video_cond_len={}".format(opt.num_frames)]
unknown += ["model.params.cond_stage_config.params.seq_len={}".format(opt.num_frames)]
now = datetime.datetime.now().strftime("%m-%dT%H")
if opt.name and opt.resume:
print(f"{opt.resume} exists. Ignoring name {opt.name}")
if opt.resume: # resume path
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
# logdir = "/".join(paths[:-2])
logdir = "/".join(paths[:-2]) # /val paths
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
opt.resume_from_checkpoint = ckpt
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml"))) # Find the Config File
opt.base = base_configs + opt.base
_tmp = logdir.split("/")
nowname = _tmp[-1]
elif opt.fast_dev_run:
nowname = name = "debug"
logdir = os.path.join(opt.logdir, name)
else:
if opt.name:
name = opt.name
elif opt.base:
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
name = cfg_name
else:
name = ""
nowname = now + '_' + name + opt.postfix # used for name log files
logdir = os.path.join(opt.logdir, name) # no longer use date for expt. keep name meaningful
if os.path.exists(logdir):
print('====================================================================')
print(f"Warning: logdir {logdir} already exists!")
print('====================================================================')
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
if opt.slurm:
import submitit
n_gpus = len(opt.gpus.split(','))
executor = submitit.AutoExecutor(folder="data/logs/submitit/%j")
executor.update_parameters(slurm_job_name=opt.name, timeout_min=60*48, slurm_partition=opt.part,
nodes=opt.num_nodes, gpus_per_node=n_gpus, cpus_per_task=10,
slurm_constraint='volta32gb', slurm_mem=100 * 1024,
tasks_per_node=opt.n_gpus, comment=opt.comment
)
job = executor.submit(run, opt, unknown)
print(job.job_id)
else:
run(opt, unknown)