Learning Rate Schedulers update the learning rate over the course of training. Learning rates can be updated after each update via :func:`step_update` or at epoch boundaries via :func:`step`.
.. automodule:: fairseq.optim.lr_scheduler :members:
.. autoclass:: fairseq.optim.lr_scheduler.FairseqLRScheduler :members: :undoc-members:
.. autoclass:: fairseq.optim.lr_scheduler.cosine_lr_scheduler.CosineSchedule :members: :undoc-members:
.. autoclass:: fairseq.optim.lr_scheduler.fixed_schedule.FixedSchedule :members: :undoc-members:
.. autoclass:: fairseq.optim.lr_scheduler.inverse_square_root_schedule.InverseSquareRootSchedule :members: :undoc-members:
.. autoclass:: fairseq.optim.lr_scheduler.reduce_lr_on_plateau.ReduceLROnPlateau :members: :undoc-members:
.. autoclass:: fairseq.optim.lr_scheduler.triangular_lr_scheduler.TriangularSchedule :members: :undoc-members: